Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 26;70(Pt 5):o608–o609. doi: 10.1107/S1600536814009155

(2E)-1-(3,5-Di­hydroxy­phen­yl)-3-(4-meth­oxy­phen­yl)prop-2-en-1-one

K S Ezhilarasi a, D Reuben Jonathan b, Shanmugam Sathya a, K Prathebha a, G Usha a,*
PMCID: PMC4011220  PMID: 24860401

Abstract

In the title compound, C16H14O4, the benzene rings are inclined to one another by 4.91 (7)°. The conformation about the C=O and C=C bonds is trans and cis, respectively. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming inversion dimers with an R 2 2(14) ring motif. The dimers are linked via O—H⋯O and C—H⋯O hydrogen bonds, forming undulating two-dimensional networks lying parallel to (10-1). These networks are linked by further C—H⋯O hydrogen bonds, forming a three-dimensional structure.

Related literature  

For the biological activity of chalcone derivatives, see: Shenvi et al. (2013); Sharma et al. (2012); Hsieh et al. (2012); Sashidhara et al. (2011). For related structures, see: Ahn et al. (2013); Jasinski et al. (2011). For standard bend lengths, see: Allen et al. (1987). For the synthesis, see: Shettigar et al. (2006); Patil et al. (2007). For graph-set notation, see: Bernstein et al. (1995).graphic file with name e-70-0o608-scheme1.jpg

Experimental  

Crystal data  

  • C16H14O4

  • M r = 270.28

  • Monoclinic, Inline graphic

  • a = 9.1920 (9) Å

  • b = 13.8931 (13) Å

  • c = 10.9299 (10) Å

  • β = 106.619 (2)°

  • V = 1337.5 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.22 × 0.20 × 0.20 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.979, T max = 0.981

  • 13378 measured reflections

  • 3402 independent reflections

  • 2617 reflections with I > 2σ(I)

  • R int = 0.032

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.042

  • wR(F 2) = 0.137

  • S = 0.91

  • 3384 reflections

  • 181 parameters

  • H-atom parameters constrained

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814009155/su2727sup1.cif

e-70-0o608-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009155/su2727Isup2.hkl

e-70-0o608-Isup2.hkl (162.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814009155/su2727Isup3.cml

CCDC reference: 998945

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O1i 0.82 1.90 2.7196 (15) 174
O3—H3A⋯O2ii 0.82 2.03 2.8361 (14) 167
C3—H3⋯O2ii 0.93 2.59 3.2875 (17) 132
C5—H5⋯O1i 0.93 2.43 3.1498 (17) 134
C12—H12⋯O4iii 0.93 2.47 3.3926 (16) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

supplementary crystallographic information

1. Comment

Chalcones are one of the secondary metabolites in plants and belong to a class of flavonoid. They have shown diverse biological activities including anticancer (Shenvi et al., 2013), antimicrobial (Sharma et al. 2012), antidiabetic (Hsieh et al., 2012) and antiinflammatory (Sashidhara et al., 2011). As part of our attempt to investigate how the substituent effects of chalcones effect the biological activities of various compounds, the title compound was synthesized and its crystal structure is reported herein.

The molecuar structure of the title compound is illustrated in Fig. 1. The bond lengths (Allen et al., 1987) and bond angles are within normal values. The benzene rings (C1-C6 and C10-C15) are inclined to one another by 4.91 (7) °. The torsion angles about the C7═O1 and C8═C9 bonds confirm the trans and cis conformations of the respective bonds. The C8═ C9 bond distance is 1.332 (2) Å, and is in good agreement with the value [1.329 (3) Å] reported for a similar structure (Ahn et al., 2013). The methoxy C atom and hydroxy O atoms are almost coplanar with the benezene ring to which they are attached. The bond angles C4—C7—C8 = 120.4 (1)° and C8—C9—C10 = 128.2 (1)° differ slightly from the normal values but are comparable with the values reported for a similar structure (Jasinski et al., 2011).

In the crystal, molecules are linked by O—H···O hydrogen bonds forming inversion dimers with a graph set motif of R22(14) [Bernstein et al., 1995]. The dimers are linked by O-H···O and C-H···O hydrogen bonds forming undulating two-dimensional networks lying parallel to (10-1) [Fig. 2 and Table 1]. These networks are linked by further C-H···O hydrogen bonds forming a three-dimensional structure (Table 1).

2. Experimental

The title compound was syntheized by the base catalyzed Claisen-Schmidt reaction according to the published procedures (Shettigar et al., 2006; Patil et al., 2007). In a 250 ml round-bottomed flask 3,5-hydroxyacetophenone (0.05 mol) and 4-methoxybenzaldehyde (0.05 mol) were placed and 120 ml of absolute alcohol were added. The mixture was stirred at room temperature for 5 min. Then 20 ml of 20% sodium hydroxide solution was added and the mixture was stirred for 2 h. The precipitate generated by adding a sufficient amount of dilute hydrochloric acid was filtered, washed with water and dried. The crude product was recrystallized twice from absolute alcohol yielding colourless block-like crystals (Yield 79%; M.p. 477 K).

3. Refinement

H atoms were positioned geometrically and treated as riding atoms: O—H = 0.82 Å, C—H =0.93 – 0.96 Å, with Uiso(H)= 1.5Ueq(O and C-methyl) and = 1.2Ueq(C) for other H atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed along the a axis. The dashed lines indicate the hydrogen bonds (see Table 1 for details).

Crystal data

C16H14O4 F(000) = 568
Mr = 270.28 Dx = 1.342 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 3402 reflections
a = 9.1920 (9) Å θ = 2.4–28.5°
b = 13.8931 (13) Å µ = 0.10 mm1
c = 10.9299 (10) Å T = 293 K
β = 106.619 (2)° Block, colourless
V = 1337.5 (2) Å3 0.22 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer 3402 independent reflections
Radiation source: fine-focus sealed tube 2617 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.032
ω and φ scan θmax = 28.5°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→12
Tmin = 0.979, Tmax = 0.981 k = −18→18
13378 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0868P)2 + 0.2822P] where P = (Fo2 + 2Fc2)/3
3384 reflections (Δ/σ)max < 0.001
181 parameters Δρmax = 0.22 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.24996 (15) 0.22432 (10) 0.12529 (12) 0.0470 (3)
H1 0.2457 0.2550 0.1998 0.056*
C2 0.15728 (15) 0.25425 (10) 0.00768 (12) 0.0447 (3)
C3 0.16469 (14) 0.20929 (10) −0.10413 (11) 0.0429 (3)
H3 0.1017 0.2292 −0.1827 0.051*
C4 0.26647 (14) 0.13466 (9) −0.09755 (11) 0.0404 (3)
C5 0.35787 (15) 0.10425 (10) 0.01976 (11) 0.0431 (3)
H5 0.4258 0.0538 0.0243 0.052*
C6 0.34818 (14) 0.14885 (10) 0.13033 (11) 0.0427 (3)
C7 0.28664 (15) 0.08504 (10) −0.21300 (12) 0.0455 (3)
C8 0.18574 (15) 0.10638 (10) −0.33903 (11) 0.0440 (3)
H8 0.1070 0.1502 −0.3473 0.053*
C9 0.20462 (15) 0.06396 (10) −0.44272 (12) 0.0456 (3)
H9 0.2855 0.0212 −0.4289 0.055*
C10 0.11515 (14) 0.07605 (9) −0.57409 (11) 0.0414 (3)
C11 0.14639 (15) 0.01784 (10) −0.66808 (12) 0.0461 (3)
H11 0.2250 −0.0267 −0.6448 0.055*
C12 0.06338 (16) 0.02522 (10) −0.79376 (12) 0.0474 (3)
H12 0.0849 −0.0147 −0.8547 0.057*
C13 −0.05233 (15) 0.09213 (10) −0.82969 (11) 0.0423 (3)
C14 −0.08502 (16) 0.15125 (11) −0.73877 (12) 0.0477 (3)
H14 −0.1623 0.1967 −0.7627 0.057*
C15 −0.00197 (16) 0.14207 (10) −0.61259 (12) 0.0474 (3)
H15 −0.0252 0.1812 −0.5517 0.057*
C16 −0.24683 (19) 0.16157 (14) −0.99921 (14) 0.0642 (4)
H16A −0.2893 0.1554 −1.0899 0.096*
H16B −0.2083 0.2257 −0.9792 0.096*
H16C −0.3240 0.1492 −0.9578 0.096*
O1 0.39025 (14) 0.02703 (10) −0.19868 (9) 0.0712 (4)
O2 0.43646 (11) 0.11864 (8) 0.24713 (8) 0.0539 (3)
H2 0.4898 0.0736 0.2377 0.081*
O3 0.06007 (13) 0.32813 (8) 0.00670 (10) 0.0626 (3)
H3A 0.0110 0.3399 −0.0671 0.094*
O4 −0.12717 (12) 0.09454 (8) −0.95602 (9) 0.0559 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0550 (7) 0.0512 (8) 0.0324 (6) −0.0020 (6) 0.0088 (5) −0.0046 (5)
C2 0.0490 (7) 0.0439 (7) 0.0394 (6) −0.0002 (5) 0.0098 (5) −0.0002 (5)
C3 0.0462 (6) 0.0460 (7) 0.0327 (6) −0.0006 (5) 0.0052 (5) 0.0019 (5)
C4 0.0452 (6) 0.0422 (7) 0.0303 (5) −0.0040 (5) 0.0051 (5) −0.0014 (4)
C5 0.0463 (6) 0.0459 (7) 0.0321 (6) 0.0004 (5) 0.0033 (5) −0.0018 (5)
C6 0.0462 (6) 0.0480 (7) 0.0290 (5) −0.0075 (5) 0.0027 (5) −0.0010 (5)
C7 0.0523 (7) 0.0479 (7) 0.0312 (6) 0.0038 (5) 0.0035 (5) −0.0010 (5)
C8 0.0495 (7) 0.0465 (7) 0.0312 (6) 0.0022 (5) 0.0036 (5) 0.0003 (5)
C9 0.0508 (7) 0.0479 (7) 0.0336 (6) 0.0053 (5) 0.0048 (5) −0.0008 (5)
C10 0.0479 (6) 0.0437 (7) 0.0302 (5) 0.0002 (5) 0.0073 (5) −0.0022 (5)
C11 0.0519 (7) 0.0478 (7) 0.0378 (6) 0.0087 (6) 0.0116 (5) −0.0020 (5)
C12 0.0592 (7) 0.0504 (8) 0.0337 (6) 0.0040 (6) 0.0149 (5) −0.0068 (5)
C13 0.0503 (7) 0.0463 (7) 0.0282 (5) −0.0033 (5) 0.0081 (5) −0.0024 (5)
C14 0.0536 (7) 0.0487 (8) 0.0366 (6) 0.0107 (6) 0.0062 (5) −0.0043 (5)
C15 0.0574 (8) 0.0496 (7) 0.0322 (6) 0.0086 (6) 0.0079 (5) −0.0079 (5)
C16 0.0666 (10) 0.0746 (11) 0.0406 (7) 0.0090 (8) −0.0018 (6) 0.0036 (7)
O1 0.0817 (8) 0.0862 (9) 0.0363 (5) 0.0398 (7) 0.0017 (5) −0.0036 (5)
O2 0.0619 (6) 0.0627 (6) 0.0286 (4) 0.0080 (5) −0.0006 (4) −0.0031 (4)
O3 0.0747 (7) 0.0664 (7) 0.0434 (5) 0.0224 (5) 0.0116 (5) −0.0024 (5)
O4 0.0678 (6) 0.0644 (7) 0.0293 (4) 0.0076 (5) 0.0036 (4) −0.0044 (4)

Geometric parameters (Å, º)

C1—C6 1.374 (2) C10—C15 1.3850 (18)
C1—C2 1.3873 (18) C10—C11 1.4002 (17)
C1—H1 0.9300 C11—C12 1.3712 (17)
C2—O3 1.3589 (16) C11—H11 0.9300
C2—C3 1.3913 (18) C12—C13 1.3823 (19)
C3—C4 1.3846 (18) C12—H12 0.9300
C3—H3 0.9300 C13—O4 1.3555 (14)
C4—C5 1.3829 (16) C13—C14 1.3868 (18)
C4—C7 1.4952 (18) C14—C15 1.3780 (17)
C5—C6 1.3835 (17) C14—H14 0.9300
C5—H5 0.9300 C15—H15 0.9300
C6—O2 1.3681 (14) C16—O4 1.4152 (19)
C7—O1 1.2230 (16) C16—H16A 0.9600
C7—C8 1.4542 (16) C16—H16B 0.9600
C8—C9 1.3320 (18) C16—H16C 0.9600
C8—H8 0.9300 O2—H2 0.8200
C9—C10 1.4460 (16) O3—H3A 0.8200
C9—H9 0.9300
C6—C1—C2 119.21 (12) C15—C10—C11 117.67 (11)
C6—C1—H1 120.4 C15—C10—C9 123.40 (11)
C2—C1—H1 120.4 C11—C10—C9 118.93 (12)
O3—C2—C1 117.50 (12) C12—C11—C10 121.31 (12)
O3—C2—C3 121.97 (12) C12—C11—H11 119.3
C1—C2—C3 120.53 (12) C10—C11—H11 119.3
C4—C3—C2 119.52 (11) C11—C12—C13 119.83 (12)
C4—C3—H3 120.2 C11—C12—H12 120.1
C2—C3—H3 120.2 C13—C12—H12 120.1
C5—C4—C3 119.95 (12) O4—C13—C12 115.54 (11)
C5—C4—C7 116.91 (12) O4—C13—C14 124.36 (12)
C3—C4—C7 123.12 (11) C12—C13—C14 120.10 (11)
C4—C5—C6 119.95 (12) C15—C14—C13 119.39 (12)
C4—C5—H5 120.0 C15—C14—H14 120.3
C6—C5—H5 120.0 C13—C14—H14 120.3
O2—C6—C1 118.62 (11) C14—C15—C10 121.69 (12)
O2—C6—C5 120.56 (12) C14—C15—H15 119.2
C1—C6—C5 120.82 (11) C10—C15—H15 119.2
O1—C7—C8 121.19 (12) O4—C16—H16A 109.5
O1—C7—C4 118.41 (11) O4—C16—H16B 109.5
C8—C7—C4 120.40 (12) H16A—C16—H16B 109.5
C9—C8—C7 120.85 (12) O4—C16—H16C 109.5
C9—C8—H8 119.6 H16A—C16—H16C 109.5
C7—C8—H8 119.6 H16B—C16—H16C 109.5
C8—C9—C10 128.17 (13) C6—O2—H2 109.5
C8—C9—H9 115.9 C2—O3—H3A 109.5
C10—C9—H9 115.9 C13—O4—C16 118.40 (11)
C6—C1—C2—O3 179.03 (12) C4—C7—C8—C9 178.67 (13)
C6—C1—C2—C3 −0.8 (2) C7—C8—C9—C10 179.53 (13)
O3—C2—C3—C4 179.68 (12) C8—C9—C10—C15 5.0 (2)
C1—C2—C3—C4 −0.6 (2) C8—C9—C10—C11 −174.38 (14)
C2—C3—C4—C5 1.14 (19) C15—C10—C11—C12 −0.5 (2)
C2—C3—C4—C7 −177.38 (12) C9—C10—C11—C12 178.91 (13)
C3—C4—C5—C6 −0.4 (2) C10—C11—C12—C13 0.9 (2)
C7—C4—C5—C6 178.19 (12) C11—C12—C13—O4 179.54 (12)
C2—C1—C6—O2 −178.54 (12) C11—C12—C13—C14 −0.4 (2)
C2—C1—C6—C5 1.5 (2) O4—C13—C14—C15 179.57 (13)
C4—C5—C6—O2 179.12 (12) C12—C13—C14—C15 −0.5 (2)
C4—C5—C6—C1 −0.9 (2) C13—C14—C15—C10 0.9 (2)
C5—C4—C7—O1 −6.2 (2) C11—C10—C15—C14 −0.4 (2)
C3—C4—C7—O1 172.31 (14) C9—C10—C15—C14 −179.79 (14)
C5—C4—C7—C8 174.30 (12) C12—C13—O4—C16 −179.90 (14)
C3—C4—C7—C8 −7.1 (2) C14—C13—O4—C16 0.0 (2)
O1—C7—C8—C9 −0.8 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O1i 0.82 1.90 2.7196 (15) 174
O3—H3A···O2ii 0.82 2.03 2.8361 (14) 167
C3—H3···O2ii 0.93 2.59 3.2875 (17) 132
C5—H5···O1i 0.93 2.43 3.1498 (17) 134
C12—H12···O4iii 0.93 2.47 3.3926 (16) 169

Symmetry codes: (i) −x+1, −y, −z; (ii) x−1/2, −y+1/2, z−1/2; (iii) −x, −y, −z−2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2727).

References

  1. Ahn, S., Lee, H.-J., Lim, Y. & Koh, D. (2013). Acta Cryst. E69, o666. [DOI] [PMC free article] [PubMed]
  2. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  3. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  4. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  5. Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Hsieh, C.-T., Hsieh, T.-J., El-Shazly, M., Chuang, D.-W., Tsai, Y.-H., Yen, C.-T., Wu, S.-F., Wu, Y.-C. & Chang, F.-R. (2012). Bioorg. Med. Chem. Lett. 22, 3912–3915. [DOI] [PubMed]
  8. Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Yathirajan, H. S. (2011). Acta Cryst. E67, o845. [DOI] [PMC free article] [PubMed]
  9. Patil, P. S., Dharmaprakash, S. M., Ramakrishna, V., Fun, H.-K., Kumar, R. S. S. & Rao, D. N. (2007). J. Cryst. Growth, 303, 520–524.
  10. Sashidhara, K. V., Kumar, M., Modukuri, R. M., Sonkar, R., Bhatia, G., Khanna, A. K., Rai, S. V. & Shukla, R. (2011). Bioorg. Med. Chem. Lett. 21, 4480–4484. [DOI] [PubMed]
  11. Sharma, V., Singh, G., Kaur, H., Saxena, A. K. & Ishar, M. P. S. (2012). Bioorg. Med. Chem. Lett. 22, 6343–6346. [DOI] [PubMed]
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Shenvi, S., Kumar, K., Hatti, K. S., Rijesh, K., Diwakar, L. & Reddy, G. C. (2013). Eur. J. Med. Chem. 62, 435–442. [DOI] [PubMed]
  14. Shettigar, V., Patil, P. S., Naveen, S., Dharmaprakash, S. M., Sridhar, M. A. & Shashidhara, J. (2006). J. Cryst. Growth, 295, 44–49.
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814009155/su2727sup1.cif

e-70-0o608-sup1.cif (17.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009155/su2727Isup2.hkl

e-70-0o608-Isup2.hkl (162.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814009155/su2727Isup3.cml

CCDC reference: 998945

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES