Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 16;70(Pt 5):o569. doi: 10.1107/S1600536814008046

β-d-Gulose

Tomohiko Ishii a,*, Shunsuke Ohga a, Kazuhiro Fukada b, Kenji Morimoto b, Genta Sakane c
PMCID: PMC4011222  PMID: 24860374

Abstract

The title compound, C6H12O6, a C-3 position epimer of d-galactose, crystallized from an aqueous solution, was confirmed as β-d-pyran­ose with a 4 C 1 (C1) conformation. In the crystal, O—H⋯O hydrogen bonds between the hy­droxy groups at the C-1 and C-6 positions connect mol­ecules into a tape structure with an R 3 3(11) ring motif running along the a-axis direction. The tapes are connected by further O—H⋯O hydrogen bonds, forming a three-dimensional network.

Related literature  

For related structures. see: Fukada et al. (2010). For the chemical synthesis of the title compound, see: Morimoto et al. (2013). For hydrogen-bonding networks, see: Jeffrey & Saenger (1994); Jeffrey & Mitra (1983).graphic file with name e-70-0o569-scheme1.jpg

Experimental  

Crystal data  

  • C6H12O6

  • M r = 180.16

  • Orthorhombic, Inline graphic

  • a = 7.0800 (3) Å

  • b = 9.8644 (3) Å

  • c = 10.6156 (4) Å

  • V = 741.39 (4) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 1.28 mm−1

  • T = 294 K

  • 0.10 × 0.10 × 0.10 mm

Data collection  

  • Rigaku R-AXIS RAPID II diffractometer

  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995) T min = 0.645, T max = 0.879

  • 7803 measured reflections

  • 1358 independent reflections

  • 1199 reflections with F 2 > 2σ(F 2)

  • R int = 0.070

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.073

  • S = 1.05

  • 1358 reflections

  • 116 parameters

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: RAPID-AUTO (Rigaku, 2009); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SIR2008 in Il Milione (Burla et al., 2007); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: CrystalStructure (Rigaku, 2010); software used to prepare material for publication: CrystalStructure.

Supplementary Material

Crystal structure: contains datablock(s) General, global, I. DOI: 10.1107/S1600536814008046/is5352sup1.cif

e-70-0o569-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008046/is5352Isup2.hkl

e-70-0o569-Isup2.hkl (75KB, hkl)

CCDC reference: 903430

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O6i 0.82 1.93 2.736 (3) 168
O2—H2A⋯O3ii 0.82 2.12 2.785 (3) 139
O3—H3A⋯O4iii 0.82 1.91 2.722 (3) 173
O4—H4A⋯O6iv 0.82 2.10 2.915 (3) 173
O6—H6A⋯O1v 0.82 1.99 2.805 (3) 177

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

supplementary crystallographic information

1. Comment

The crystal system (orthorhombic), space group (P212121), and number of molecules in the unit cell (Z = 4) of the title compound are the same as for the typical hexose (C6H12O6) monosaccharides (Fukada et al., 2010). There is a difference in the hydrogen bonding patterns, having a circular chain network returning to the same molecule, and the intermolecular interactions between two adjacent β-D-gulose molecules in the crystal.

In an equatorial OH group at C-2 position, the hydrogen bond can be confirmed as a donor, which connects to the OH group at C-3 position of the neighboring molecule. However, for the axial OH groups at C-3 and C-4 positions, each has hydrogen bonds both as a donor and an acceptor to the OH groups at either the C-2 and C-4, or the C-3 and C-6 positions, respectively. In the OH group at the C-6 position, there is an intermolecular hydrogen bond between the OH group at C-4 position of the neighboring molecule, and there are two additional hydrogen bonds with the OH groups at different C-1 positions in these two different D-gulose molecules. There is an infinite hydrogen bonding chain along to the a-axis (···O1—H1A···O6—H6A···O1—H1A···), which is connecting to a finite chain (O2—H2A···O3—H3A···O4—H4A···O6—H6A). Therefore, the hydrogen bonding network can be categorized as Jeffrey's class (iv) (Jeffrey & Saenger, 1994; Jeffrey & Mitra, 1983). There is a step for returning to the same gulose molecule in an infinite chain (···gulose O1—H1A···O6—H6A···O1—H1A···gulose O6—H6A···). Such a significant circular hydrogen bonding ring should be treated differently from the typical infinite chain.

2. Experimental

D-Gulose was prepared from disaccharide lactitol by a combination of microbial and chemical reactions. 3-Ketolactitol, oxidized from lactitol by Agrobacterium tumefaciens, was reduced by chemical hydrogenation. The resulting product, D-gulosyl-(β-1, 4)-D-sorbitol containing D-gulose, was hydrolyzed by acid hydrolysis, and its subsequent hydrolysates were separated by chromatography. Lastly, a crude crystal from the concentrated D-gulose syrup was recovered by ethanol precipitation, and then its aqueous solution was recrystallized, resulting in pure D-gulose. The D-gulose was concentrated to a brix value in a range of approximately 85–90%. Ethanol (twice the volume of the resulting syrup) was added and the resulting solution was mixed vigorously. The resulting crystals were dissolved in ultrapure water and then concentrated and crystallized at room temperature. The specific optical rotation of D-gulose was analyzed using a polarimeter (JASCO P-1030 Tokyo). An optical rotation was also performed, providing [α]20D = -24.10 (authentic sample = -24.74). The 13C-NMR spectra of the isolated D-gulose was measured at 600 MHz in D2O using an ALPHA 600 system (Jeol Datum, Tokyo). All spectra were collected at 30 °C using trimethylsilyl propanoic acid as internal reference. All of the chemical shifts [δ = 94.6 (C1), 74.5 (C5), 71.9 (C3), 70.2 (C4), 69.8 (C2), 61.7 (C6)] corresponded well with an authentic D-gulose sample. These results indicate that the isolated material was D-gulose and that the current study was successful in preparing D-gulose. The gulose is a specialized member of the rare sugar family, therefore, the details regarding the synthesis, purification, and crystallization of gulose should be reported in a specialized journal (Morimoto et al., 2013).

3. Refinement

H atoms bounded to methine-type C (H1B, H2B, H3B, H4B, H5A) were positioned geometrically and refined using a riding model with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to methylene-type C (H6B, H6C) were positioned geometrically and refined using a riding model with C—H = 0.97 Å and Uiso(H) = 1.2Ueq(C). H atoms bounded to O (H1A, H2A, H3A, H4A, H6A) were positioned geometrically and refined using a riding model with O—H = 0.82 Å and Uiso(H) = 1.2Ueq(O), allowing for free rotation of the OH groups.

Figures

Fig. 1.

Fig. 1.

ORTEP view of the title compound with the atom-labeling scheme. The thermal ellipsoids of all non-hydrogen atoms are drawn at the 50% probability level. H atoms are shown as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

Part of the crystal structure of the title compound with hydrogen-bonding network represented as light blue dashed lines, viewed down the c axis. The hydrogen atoms are omitted for clarity.

Crystal data

C6H12O6 F(000) = 384.00
Mr = 180.16 Dx = 1.614 Mg m3
Orthorhombic, P212121 Cu Kα radiation, λ = 1.54187 Å
Hall symbol: P 2ac 2ab Cell parameters from 7124 reflections
a = 7.0800 (3) Å θ = 4.2–68.2°
b = 9.8644 (3) Å µ = 1.28 mm1
c = 10.6156 (4) Å T = 294 K
V = 741.39 (4) Å3 Block, colorless
Z = 4 0.10 × 0.10 × 0.10 mm

Data collection

Rigaku R-AXIS RAPID II diffractometer 1199 reflections with F2 > 2σ(F2)
Detector resolution: 10.000 pixels mm-1 Rint = 0.070
ω scans θmax = 68.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995) h = −8→8
Tmin = 0.645, Tmax = 0.879 k = −11→11
7803 measured reflections l = −12→12
1358 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.0261P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
1358 reflections Δρmax = 0.14 e Å3
116 parameters Δρmin = −0.14 e Å3
0 restraints Extinction correction: SHELXL2013 (Sheldrick, 2008)
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0063 (12)
Secondary atom site location: difference Fourier map

Special details

Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.6475 (3) 0.4070 (3) 1.02633 (16) 0.0367 (6)
O2 0.7927 (3) 0.6435 (3) 0.89378 (15) 0.0385 (6)
O3 0.4219 (3) 0.7683 (2) 0.87238 (18) 0.0369 (6)
O4 0.3674 (3) 0.49846 (18) 0.64349 (14) 0.0295 (5)
O5 0.3828 (2) 0.41908 (19) 0.90855 (15) 0.0259 (5)
O6 −0.0053 (3) 0.35032 (19) 0.92624 (16) 0.0304 (5)
C1 0.5316 (4) 0.4977 (3) 0.9615 (2) 0.0270 (7)
C2 0.6282 (4) 0.5724 (3) 0.8553 (2) 0.0257 (6)
C3 0.4871 (4) 0.6654 (3) 0.7890 (2) 0.0266 (7)
C4 0.3165 (4) 0.5860 (3) 0.7452 (2) 0.0255 (7)
C5 0.2385 (4) 0.5021 (3) 0.8521 (2) 0.0234 (6)
C6 0.0815 (4) 0.4071 (3) 0.8155 (3) 0.0277 (7)
H1A 0.7468 0.3971 0.9876 0.0441*
H1B 0.4786 0.5635 1.0210 0.0324*
H2A 0.7726 0.6811 0.9614 0.0462*
H2B 0.6682 0.5042 0.7937 0.0308*
H3A 0.4827 0.8379 0.8608 0.0443*
H3B 0.5483 0.7077 0.7161 0.0319*
H4A 0.3971 0.5441 0.5821 0.0354*
H4B 0.2191 0.6495 0.7164 0.0306*
H5A 0.1902 0.5641 0.9167 0.0281*
H6A 0.0367 0.2740 0.9386 0.0364*
H6B −0.0125 0.4559 0.7669 0.0333*
H6C 0.1315 0.3348 0.7634 0.0333*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0251 (10) 0.0477 (13) 0.0374 (11) 0.0010 (11) 0.0001 (9) 0.0157 (11)
O2 0.0320 (11) 0.0493 (15) 0.0341 (11) −0.0151 (10) −0.0014 (9) −0.0041 (11)
O3 0.0461 (13) 0.0227 (12) 0.0420 (11) −0.0050 (10) 0.0113 (10) −0.0076 (10)
O4 0.0416 (12) 0.0273 (12) 0.0196 (9) −0.0012 (10) 0.0020 (9) 0.0013 (8)
O5 0.0241 (9) 0.0231 (10) 0.0305 (10) −0.0011 (9) −0.0031 (8) 0.0033 (9)
O6 0.0276 (10) 0.0251 (11) 0.0384 (10) −0.0001 (9) 0.0042 (9) 0.0057 (9)
C1 0.0263 (14) 0.0289 (17) 0.0258 (13) 0.0003 (13) −0.0030 (13) 0.0012 (12)
C2 0.0230 (13) 0.0283 (16) 0.0257 (13) −0.0054 (13) −0.0010 (12) −0.0013 (13)
C3 0.0302 (15) 0.0242 (17) 0.0253 (13) −0.0006 (13) 0.0060 (13) −0.0002 (12)
C4 0.0284 (14) 0.0251 (15) 0.0231 (13) 0.0058 (14) −0.0004 (12) 0.0016 (13)
C5 0.0225 (13) 0.0247 (15) 0.0231 (12) 0.0041 (11) 0.0019 (12) 0.0011 (12)
C6 0.0265 (14) 0.0320 (17) 0.0248 (13) 0.0019 (14) 0.0006 (11) 0.0001 (13)

Geometric parameters (Å, º)

O1—C1 1.396 (4) O1—H1A 0.820
O2—C2 1.420 (3) O2—H2A 0.820
O3—C3 1.424 (4) O3—H3A 0.820
O4—C4 1.429 (3) O4—H4A 0.820
O5—C1 1.424 (3) O6—H6A 0.820
O5—C5 1.440 (3) C1—H1B 0.980
O6—C6 1.439 (3) C2—H2B 0.980
C1—C2 1.510 (4) C3—H3B 0.980
C2—C3 1.527 (4) C4—H4B 0.980
C3—C4 1.513 (4) C5—H5A 0.980
C4—C5 1.510 (4) C6—H6B 0.970
C5—C6 1.505 (4) C6—H6C 0.970
O3···H2A 2.7927 O6···H4Aviii 2.0992
O4···H5A 3.2256 H1A···O6ii 1.9284
O1···H6Ai 1.9853 H2A···O3ix 2.1169
O2···H6Bii 2.6723 H3A···O4iii 1.9072
O2···H6Ciii 2.5757 H3B···O5iii 2.5179
O3···H2Aiv 2.1169 H4A···O6vi 2.0992
O4···H3Av 1.9072 H5A···O4viii 2.5185
O4···H5Avi 2.5185 H6A···O1x 1.9853
O5···H3Bv 2.5179 H6B···O2vii 2.6723
O6···H1Avii 1.9284 H6C···O2v 2.5757
C1—O5—C5 112.3 (2) C6—O6—H6A 109.480
O1—C1—O5 106.3 (2) O1—C1—H1B 109.359
O1—C1—C2 114.5 (2) O5—C1—H1B 109.362
O5—C1—C2 107.82 (18) C2—C1—H1B 109.363
O2—C2—C1 113.41 (19) O2—C2—H2B 107.098
O2—C2—C3 111.9 (3) C1—C2—H2B 107.103
C1—C2—C3 109.9 (2) C3—C2—H2B 107.097
O3—C3—C2 110.75 (19) O3—C3—H3B 109.292
O3—C3—C4 107.5 (2) C2—C3—H3B 109.290
C2—C3—C4 110.7 (3) C4—C3—H3B 109.286
O4—C4—C3 110.1 (2) O4—C4—H4B 109.124
O4—C4—C5 109.2 (3) C3—C4—H4B 109.127
C3—C4—C5 110.15 (19) C5—C4—H4B 109.123
O5—C5—C4 111.4 (2) O5—C5—H5A 108.140
O5—C5—C6 106.1 (3) C4—C5—H5A 108.132
C4—C5—C6 114.7 (2) C6—C5—H5A 108.139
O6—C6—C5 110.29 (19) O6—C6—H6B 109.601
C1—O1—H1A 109.471 O6—C6—H6C 109.595
C2—O2—H2A 109.468 C5—C6—H6B 109.603
C3—O3—H3A 109.466 C5—C6—H6C 109.595
C4—O4—H4A 109.475 H6B—C6—H6C 108.127
C1—O5—C5—C4 61.5 (3) C1—C2—C3—C4 −55.0 (3)
C1—O5—C5—C6 −173.06 (15) O3—C3—C4—O4 168.99 (18)
C5—O5—C1—O1 172.54 (16) O3—C3—C4—C5 −70.5 (3)
C5—O5—C1—C2 −64.2 (3) C2—C3—C4—O4 −69.9 (3)
O1—C1—C2—O2 −55.5 (3) C2—C3—C4—C5 50.5 (3)
O1—C1—C2—C3 178.41 (18) O4—C4—C5—O5 68.1 (3)
O5—C1—C2—O2 −173.59 (19) O4—C4—C5—C6 −52.5 (3)
O5—C1—C2—C3 60.4 (3) C3—C4—C5—O5 −53.0 (3)
O2—C2—C3—O3 −62.8 (3) C3—C4—C5—C6 −173.52 (19)
O2—C2—C3—C4 178.08 (16) O5—C5—C6—O6 66.8 (3)
C1—C2—C3—O3 64.1 (3) C4—C5—C6—O6 −169.7 (2)

Symmetry codes: (i) x+1/2, −y+1/2, −z+2; (ii) x+1, y, z; (iii) −x+1, y+1/2, −z+3/2; (iv) x−1/2, −y+3/2, −z+2; (v) −x+1, y−1/2, −z+3/2; (vi) −x+1/2, −y+1, z−1/2; (vii) x−1, y, z; (viii) −x+1/2, −y+1, z+1/2; (ix) x+1/2, −y+3/2, −z+2; (x) x−1/2, −y+1/2, −z+2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O6ii 0.82 1.93 2.736 (3) 168
O2—H2A···O3ix 0.82 2.12 2.785 (3) 139
O3—H3A···O4iii 0.82 1.91 2.722 (3) 173
O4—H4A···O6vi 0.82 2.10 2.915 (3) 173
O6—H6A···O1x 0.82 1.99 2.805 (3) 177

Symmetry codes: (ii) x+1, y, z; (iii) −x+1, y+1/2, −z+3/2; (vi) −x+1/2, −y+1, z−1/2; (ix) x+1/2, −y+3/2, −z+2; (x) x−1/2, −y+1/2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5352).

References

  1. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.
  2. Fukada, K., Ishii, T., Tanaka, K., Yamaji, M., Yamaoka, Y., Kobashi, K. & Izumori, K. (2010). Bull. Chem. Soc. Jpn, 83, 1193–1197.
  3. Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  4. Jeffrey, G. A. & Mitra, J. (1983). Acta Cryst. B39, 469–480.
  5. Jeffrey, G. A. & Saenger, W. (1994). Hydrogen Bonding in Biological Structures, Study Edition. New York: Springer-Verlag.
  6. Morimoto, K., Shimonishi, T., Miyake, S., Takata, G. & Izumori, K. (2013). Biosci. Biotechnol. Biochem. 77, 253–258. [DOI] [PubMed]
  7. Rigaku (2009). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  8. Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, global, I. DOI: 10.1107/S1600536814008046/is5352sup1.cif

e-70-0o569-sup1.cif (20KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008046/is5352Isup2.hkl

e-70-0o569-Isup2.hkl (75KB, hkl)

CCDC reference: 903430

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES