Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 12;70(Pt 5):o550. doi: 10.1107/S1600536814007867

(Z)-N-[1-(Aziridin-1-yl)-2,2,2-tri­fluoro­ethyl­idene]-4-bromo­aniline

Alexander S Bunev a,*, Maksim A Vasiliev a, Gennady I Ostapenko a, Alexander S Peregudov b, Victor N Khrustalev c
PMCID: PMC4011223  PMID: 24860358

Abstract

The title compound, C10H8BrF3N2, crystallizes with two independent mol­ecules in the asymmetric unit, which can be considered as being related by a pseudo-inversion center, so their conformations are different; the corresponding N=C—N—C torsion angles are 54.6 (5) and −50.5 (5)°. In the crystal, mol­ecules related by translation in [001] inter­act through short inter­molecular Br⋯F contacts [3.276 (2) and 3.284 (2) Å], thus forming two types of crystallographically independent chains.

Related literature  

For applications of aziridines, see: Tanner (1994); Remers & Iyengar (1995); Armstrong et al. (1996); Katoh et al. (1996); Schirmeister (1999a ,b ); McCoull & Davis (2000). For the crystal structures of related compounds, see: Chinnakali et al. (1998); McLaren & Sweeney (1999); Zhu et al. (2006); Moragas Solà et al. (2010).graphic file with name e-70-0o550-scheme1.jpg

Experimental  

Crystal data  

  • C10H8BrF3N2

  • M r = 293.09

  • Monoclinic, Inline graphic

  • a = 11.642 (2) Å

  • b = 8.5455 (16) Å

  • c = 11.846 (2) Å

  • β = 116.106 (3)°

  • V = 1058.3 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 3.90 mm−1

  • T = 120 K

  • 0.30 × 0.25 × 0.25 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2003) T min = 0.388, T max = 0.442

  • 13846 measured reflections

  • 6146 independent reflections

  • 5186 reflections with I > 2σ(I)

  • R int = 0.043

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.118

  • S = 1.01

  • 6146 reflections

  • 289 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 1.97 e Å−3

  • Δρmin = −0.86 e Å−3

  • Absolute structure: Flack (1983), 2866 Friedel pairs

  • Absolute structure parameter: 0.025 (11)

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT (Bruker, 2001); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814007867/cv5449sup1.cif

e-70-0o550-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007867/cv5449Isup2.hkl

e-70-0o550-Isup2.hkl (300.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007867/cv5449Isup3.cml

CCDC reference: 996162

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Ministry of Education and Science of the Russian Federation (State contract No. 426).

supplementary crystallographic information

1. Comment

Aziridines are important heterocyclic compounds present in unusual natural products that display strong biological activity (Tanner, 1994; McCoull & Davis, 2000). For instance, azinomycines A and B isolated from the fermentation broth of Streptomyces griseofuscus and (+)-FR900482 isolated from the culture broth of Streptomyces sandaensis are potent antitumor antibiotics that exhibit exceptional activity against various types of mammalian solid tumors. Mitomycin C is an aziridine-containing antibiotic produced by Streptomyces caespitosus, whose antineoplastic activity is associated with the high reactivity of the strained aziridine ring (Remers & Iyengar, 1995; Armstrong et al., 1996; Katoh et al., 1996). Recently novel types of peptidic cysteine protease inhibitors containing aziridine-2,3-dicarboxylic acid have been designed and synthesized (Schirmeister, 1999a,b).

In this work, a new substituted aziridine, C10H8BrF3N2 (I), was prepared by the reaction N-(4-bromophenyl)-2,2,2-trifluoroethenecarbonimidoyl chloride with aziridine at room temperature (Figure 1), and its structure was unambiguously established by the X-ray diffraction study (Figure 2).

The title compound I crystallizes in chiral monoclinic space group P21 with two crystallographically independent molecules in the unit cell. The two crystallographically independent molecules represent different conformers distinguishing by rotation of the aziridine substituent around the ordinary (CF3)C—N bond (the corresponding N1—C1—N2—C3 and N3—C11—N4—C13 totsion angles are 54.6 (5) and –50.5 (5)o, respectively). The bond lengths and angles in I are in a good agreement with those found in the related compounds (Chinnakali et al., 1998; McLaren & Sweeney, 1999; Zhu et al., 2006; Moragas Solà et al., 2010). The molecule of I is the Z-isomer relative to the double C═N bond. The p-bromo-phenyl substituent is twisted by 38.42 (12) and 39.61 (10)% (for the two crystallographically independent molecules, respectively) relative to the double bond plane. Tha absolute structure of I was objectively determined by the refinement of Flack parameter, which has become equal to 0.025 (11).

In the crystal, the molecules of I form infinite chains along [001] by the intermolecular secondary Br1···F1i (2.276 (2) Å) and Br2···F5ii (3.284 (2) Å) interactions (Figure 3) [symmetry codes: (i) x, y, 1 + z; (ii) x, y, –1 + z]. The chains consist of the conformationally similar molecules and arranged at van der Waals distances.

2. Experimental

To a mixture of aziridine (1.29 mL, 1.075 g, 25 mmol), triethylamine (3.48 mL, 2.525 g, 25 mmol), and benzene (35 mL) was added slowly (20 min) a solution of N-(4-bromophenyl)-2,2,2-trifluoroethenecarbonimidoyl chloride in benzene (50 mL). The mixture was stirred for 5 h. The triethylamine hydrochloride was filtered, and the solvent was evaporated to give of crude product. Yield is 75%. The single-crystal of the product I was obtained by slow crystallization from EtOAc/Hexane (1:9). M.p. = 324–325 K. IR (KBr), ν/cm-1: 3408, 1715, 1629, 1492, 1295, 1200, 1155, 996, 828, 531. 1H NMR (600 MHz, DMSO-d6, 304 K): 7.56 (d, 2H, J = 8.2), 6.99 (d, 2H, J = 8.7), 2.21 (br. s, 4H). Anal. Calcd for C10H8BrF3N2: C, 33.54; H, 1.41. Found: C, 33.61; H, 1.52.

3. Refinement

All hydrogen atoms were placed in the calculated positions with C—H = 0.95 (aryl-H) and 0.99 (methylene-H) Å and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.2Ueq(C)]. There are high positive residual densities of 1.44–1.97 eÅ–3 near the Br1 and Br2 centers (0.79–0.90 Å) due to considerable absorption effects which could not be completely corrected.

Figures

Fig. 1.

Fig. 1.

The synthesis of (Z)-N-[1-(aziridin-1-yl)-2,2,2-trifluoroethylidene]-4-bromoaniline.

Fig. 2.

Fig. 2.

Molecular structure of I (two crystallographically independent molecules representing the different conformers are shown). Displacement ellipsoids are presented at the 50% probability level. H atoms are depicted as small spheres of arbitrary radius.

Fig. 3.

Fig. 3.

A portion of the crystal structure of I demonstrating the chains of the molecules extended along [001]. The intermolecular secondary Br···F interactions are depicted by dashed lines.

Crystal data

C10H8BrF3N2 F(000) = 576
Mr = 293.09 Dx = 1.840 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 4691 reflections
a = 11.642 (2) Å θ = 3.1–29.9°
b = 8.5455 (16) Å µ = 3.90 mm1
c = 11.846 (2) Å T = 120 K
β = 116.106 (3)° Prism, colourless
V = 1058.3 (3) Å3 0.30 × 0.25 × 0.25 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer 6146 independent reflections
Radiation source: fine-focus sealed tube 5186 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.043
φ and ω scans θmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2003) h = −16→16
Tmin = 0.388, Tmax = 0.442 k = −12→11
13846 measured reflections l = −16→16

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047 H-atom parameters constrained
wR(F2) = 0.118 w = 1/[σ2(Fo2) + (0.0665P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
6146 reflections Δρmax = 1.97 e Å3
289 parameters Δρmin = −0.86 e Å3
1 restraint Absolute structure: Flack (1983), 2866 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.025 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.11522 (3) 0.26312 (4) 1.18963 (3) 0.03080 (7)
F1 0.09963 (18) 0.2247 (3) 0.45774 (18) 0.0409 (5)
F2 −0.0174 (2) 0.4285 (3) 0.3927 (2) 0.0451 (5)
F3 −0.1028 (2) 0.2017 (3) 0.35005 (19) 0.0444 (6)
N1 0.0732 (2) 0.2970 (3) 0.6606 (2) 0.0273 (6)
N2 −0.1541 (2) 0.2779 (3) 0.5405 (2) 0.0275 (5)
C1 −0.0288 (3) 0.2907 (3) 0.5599 (3) 0.0251 (6)
C2 −0.0130 (3) 0.2852 (4) 0.4393 (3) 0.0295 (7)
C3 −0.2122 (3) 0.3864 (4) 0.5954 (3) 0.0319 (7)
H3A −0.1607 0.4771 0.6428 0.038*
H3B −0.2703 0.3426 0.6283 0.038*
C4 −0.2560 (3) 0.3829 (4) 0.4556 (3) 0.0345 (8)
H4A −0.3408 0.3367 0.4024 0.041*
H4B −0.2311 0.4713 0.4170 0.041*
C5 0.0744 (3) 0.2934 (4) 0.7808 (3) 0.0255 (6)
C6 −0.0055 (3) 0.1941 (4) 0.8088 (3) 0.0283 (7)
H6 −0.0683 0.1327 0.7443 0.034*
C7 0.0070 (3) 0.1857 (4) 0.9306 (3) 0.0285 (7)
H7 −0.0466 0.1183 0.9502 0.034*
C8 0.0988 (2) 0.2770 (4) 1.0237 (3) 0.0267 (6)
C9 0.1785 (3) 0.3738 (4) 0.9972 (3) 0.0274 (6)
H9 0.2406 0.4358 1.0619 0.033*
C10 0.1679 (3) 0.3806 (4) 0.8765 (3) 0.0279 (7)
H10 0.2245 0.4448 0.8587 0.034*
Br2 0.42565 (3) 0.56843 (4) 0.34093 (3) 0.03331 (7)
F4 0.6460 (2) 0.5903 (4) 1.18097 (19) 0.0506 (6)
F5 0.44343 (19) 0.6038 (3) 1.07301 (19) 0.0455 (6)
F6 0.5344 (2) 0.3820 (3) 1.1287 (2) 0.0497 (6)
N3 0.4603 (2) 0.5260 (3) 0.8663 (2) 0.0261 (6)
N4 0.6881 (2) 0.5003 (3) 0.9894 (2) 0.0273 (6)
C11 0.5624 (3) 0.5129 (4) 0.9676 (3) 0.0241 (6)
C12 0.5469 (3) 0.5233 (4) 1.0885 (3) 0.0293 (7)
C13 0.7334 (3) 0.3884 (4) 0.9255 (3) 0.0320 (7)
H13A 0.7994 0.4238 0.8999 0.038*
H13B 0.6710 0.3124 0.8677 0.038*
C14 0.7710 (3) 0.3724 (4) 1.0628 (3) 0.0342 (8)
H14A 0.7318 0.2866 1.0901 0.041*
H14B 0.8603 0.3982 1.1222 0.041*
C15 0.4617 (3) 0.5305 (3) 0.7482 (3) 0.0242 (6)
C16 0.5513 (3) 0.6135 (4) 0.7248 (3) 0.0284 (7)
H16 0.6205 0.6634 0.7923 0.034*
C17 0.5408 (3) 0.6246 (4) 0.6031 (3) 0.0283 (7)
H17 0.6023 0.6813 0.5872 0.034*
C18 0.4399 (3) 0.5519 (4) 0.5065 (3) 0.0263 (6)
C19 0.3487 (3) 0.4687 (4) 0.5270 (3) 0.0294 (7)
H19 0.2802 0.4184 0.4592 0.035*
C20 0.3586 (3) 0.4601 (4) 0.6479 (3) 0.0280 (7)
H20 0.2952 0.4061 0.6627 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.02611 (10) 0.03998 (15) 0.02471 (11) 0.00583 (12) 0.00971 (9) 0.00366 (12)
F1 0.0358 (8) 0.0569 (14) 0.0337 (8) 0.0102 (8) 0.0188 (7) 0.0010 (8)
F2 0.0660 (11) 0.0346 (11) 0.0429 (9) 0.0019 (9) 0.0315 (9) 0.0065 (8)
F3 0.0423 (10) 0.0577 (13) 0.0293 (8) −0.0130 (10) 0.0122 (8) −0.0137 (9)
N1 0.0243 (9) 0.0302 (13) 0.0260 (10) −0.0010 (9) 0.0099 (8) −0.0010 (9)
N2 0.0209 (9) 0.0305 (12) 0.0267 (10) −0.0031 (10) 0.0066 (8) −0.0002 (10)
C1 0.0245 (10) 0.0251 (14) 0.0239 (11) −0.0043 (10) 0.0088 (9) −0.0046 (10)
C2 0.0301 (12) 0.0265 (15) 0.0278 (12) −0.0035 (11) 0.0090 (10) −0.0042 (11)
C3 0.0260 (12) 0.0347 (16) 0.0347 (14) 0.0017 (12) 0.0130 (11) −0.0019 (12)
C4 0.0251 (12) 0.0389 (17) 0.0343 (14) 0.0007 (13) 0.0082 (11) 0.0002 (13)
C5 0.0211 (10) 0.0302 (15) 0.0234 (11) 0.0010 (10) 0.0082 (9) 0.0009 (10)
C6 0.0250 (12) 0.0275 (14) 0.0305 (13) −0.0021 (11) 0.0104 (10) −0.0007 (11)
C7 0.0291 (12) 0.0238 (14) 0.0307 (13) −0.0041 (11) 0.0112 (11) 0.0021 (11)
C8 0.0255 (10) 0.0297 (14) 0.0276 (11) 0.0030 (12) 0.0143 (9) 0.0019 (11)
C9 0.0192 (11) 0.0283 (14) 0.0300 (13) −0.0010 (10) 0.0064 (10) −0.0046 (11)
C10 0.0201 (10) 0.0293 (14) 0.0321 (13) −0.0019 (11) 0.0093 (10) 0.0018 (12)
Br2 0.03588 (13) 0.03795 (15) 0.02514 (11) 0.00254 (13) 0.01254 (10) 0.00202 (12)
F4 0.0362 (9) 0.0816 (18) 0.0296 (8) −0.0126 (11) 0.0106 (7) −0.0142 (11)
F5 0.0434 (9) 0.0601 (15) 0.0381 (9) 0.0166 (10) 0.0227 (8) 0.0032 (9)
F6 0.0759 (12) 0.0382 (11) 0.0497 (10) 0.0016 (11) 0.0411 (9) 0.0083 (9)
N3 0.0213 (9) 0.0281 (13) 0.0247 (10) −0.0008 (9) 0.0064 (8) 0.0010 (9)
N4 0.0192 (9) 0.0300 (12) 0.0285 (11) 0.0033 (9) 0.0067 (9) 0.0002 (10)
C11 0.0231 (11) 0.0207 (12) 0.0267 (12) −0.0004 (10) 0.0093 (10) −0.0006 (10)
C12 0.0237 (12) 0.0372 (16) 0.0232 (12) 0.0025 (11) 0.0068 (10) −0.0014 (11)
C13 0.0301 (12) 0.0297 (15) 0.0361 (14) 0.0028 (12) 0.0144 (11) −0.0051 (12)
C14 0.0228 (12) 0.0367 (16) 0.0347 (15) 0.0057 (12) 0.0049 (11) 0.0074 (13)
C15 0.0184 (10) 0.0257 (14) 0.0260 (11) 0.0019 (9) 0.0073 (9) 0.0011 (10)
C16 0.0234 (11) 0.0303 (15) 0.0285 (12) −0.0025 (10) 0.0088 (10) −0.0019 (11)
C17 0.0232 (11) 0.0294 (14) 0.0301 (13) 0.0018 (11) 0.0095 (10) 0.0076 (11)
C18 0.0234 (11) 0.0309 (15) 0.0221 (11) 0.0038 (11) 0.0077 (9) 0.0029 (11)
C19 0.0215 (11) 0.0363 (16) 0.0274 (12) −0.0006 (11) 0.0080 (10) −0.0029 (12)
C20 0.0186 (10) 0.0313 (14) 0.0302 (13) −0.0033 (11) 0.0073 (10) −0.0033 (12)

Geometric parameters (Å, º)

Br1—C8 1.893 (3) Br2—C18 1.899 (3)
F1—C2 1.335 (4) F4—C12 1.322 (4)
F2—C2 1.335 (4) F5—C12 1.328 (4)
F3—C2 1.322 (4) F6—C12 1.329 (4)
N1—C1 1.261 (3) N3—C11 1.269 (4)
N1—C5 1.418 (4) N3—C15 1.407 (4)
N2—C1 1.377 (4) N4—C11 1.373 (4)
N2—C3 1.459 (4) N4—C13 1.456 (4)
N2—C4 1.474 (4) N4—C14 1.464 (4)
C1—C2 1.520 (4) C11—C12 1.522 (5)
C3—C4 1.504 (5) C13—C14 1.493 (5)
C3—H3A 0.9900 C13—H13A 0.9900
C3—H3B 0.9900 C13—H13B 0.9900
C4—H4A 0.9900 C14—H14A 0.9900
C4—H4B 0.9900 C14—H14B 0.9900
C5—C10 1.392 (4) C15—C16 1.387 (4)
C5—C6 1.403 (5) C15—C20 1.399 (4)
C6—C7 1.387 (5) C16—C17 1.396 (5)
C6—H6 0.9500 C16—H16 0.9500
C7—C8 1.389 (4) C17—C18 1.375 (4)
C7—H7 0.9500 C17—H17 0.9500
C8—C9 1.378 (4) C18—C19 1.386 (5)
C9—C10 1.382 (4) C19—C20 1.387 (5)
C9—H9 0.9500 C19—H19 0.9500
C10—H10 0.9500 C20—H20 0.9500
C1—N1—C5 122.5 (3) C11—N3—C15 121.8 (3)
C1—N2—C3 122.7 (3) C11—N4—C13 123.6 (3)
C1—N2—C4 122.7 (3) C11—N4—C14 122.7 (3)
C3—N2—C4 61.7 (2) C13—N4—C14 61.5 (2)
N1—C1—N2 130.5 (3) N3—C11—N4 131.5 (3)
N1—C1—C2 115.9 (3) N3—C11—C12 115.8 (3)
N2—C1—C2 113.4 (2) N4—C11—C12 112.6 (2)
F3—C2—F2 107.0 (2) F4—C12—F5 107.3 (3)
F3—C2—F1 107.2 (3) F4—C12—F6 106.8 (3)
F2—C2—F1 106.2 (3) F5—C12—F6 106.5 (3)
F3—C2—C1 112.8 (3) F4—C12—C11 112.6 (3)
F2—C2—C1 111.2 (3) F5—C12—C11 112.1 (2)
F1—C2—C1 112.0 (2) F6—C12—C11 111.2 (3)
N2—C3—C4 59.7 (2) N4—C13—C14 59.5 (2)
N2—C3—H3A 117.8 N4—C13—H13A 117.8
C4—C3—H3A 117.8 C14—C13—H13A 117.8
N2—C3—H3B 117.8 N4—C13—H13B 117.8
C4—C3—H3B 117.8 C14—C13—H13B 117.8
H3A—C3—H3B 114.9 H13A—C13—H13B 115.0
N2—C4—C3 58.6 (2) N4—C14—C13 59.0 (2)
N2—C4—H4A 117.9 N4—C14—H14A 117.9
C3—C4—H4A 117.9 C13—C14—H14A 117.9
N2—C4—H4B 117.9 N4—C14—H14B 117.9
C3—C4—H4B 117.9 C13—C14—H14B 117.9
H4A—C4—H4B 115.1 H14A—C14—H14B 115.0
C10—C5—C6 119.6 (3) C16—C15—C20 119.3 (3)
C10—C5—N1 117.7 (3) C16—C15—N3 123.4 (3)
C6—C5—N1 122.4 (3) C20—C15—N3 116.9 (3)
C7—C6—C5 120.0 (3) C15—C16—C17 120.6 (3)
C7—C6—H6 120.0 C15—C16—H16 119.7
C5—C6—H6 120.0 C17—C16—H16 119.7
C6—C7—C8 119.3 (3) C18—C17—C16 118.9 (3)
C6—C7—H7 120.4 C18—C17—H17 120.5
C8—C7—H7 120.4 C16—C17—H17 120.5
C9—C8—C7 121.1 (3) C17—C18—C19 121.7 (3)
C9—C8—Br1 120.2 (2) C17—C18—Br2 118.7 (2)
C7—C8—Br1 118.7 (2) C19—C18—Br2 119.6 (2)
C8—C9—C10 119.9 (3) C18—C19—C20 119.1 (3)
C8—C9—H9 120.1 C18—C19—H19 120.5
C10—C9—H9 120.1 C20—C19—H19 120.5
C9—C10—C5 120.2 (3) C19—C20—C15 120.3 (3)
C9—C10—H10 119.9 C19—C20—H20 119.9
C5—C10—H10 119.9 C15—C20—H20 119.9
C5—N1—C1—N2 −0.8 (5) C15—N3—C11—N4 −0.2 (5)
C5—N1—C1—C2 −176.2 (3) C15—N3—C11—C12 175.1 (3)
C3—N2—C1—N1 54.6 (5) C13—N4—C11—N3 −50.5 (5)
C4—N2—C1—N1 129.6 (4) C14—N4—C11—N3 −125.8 (4)
C3—N2—C1—C2 −130.0 (3) C13—N4—C11—C12 134.1 (3)
C4—N2—C1—C2 −54.9 (4) C14—N4—C11—C12 58.8 (4)
N1—C1—C2—F3 146.9 (3) N3—C11—C12—F4 −146.2 (3)
N2—C1—C2—F3 −29.3 (4) N4—C11—C12—F4 30.0 (4)
N1—C1—C2—F2 −92.9 (3) N3—C11—C12—F5 −25.1 (4)
N2—C1—C2—F2 91.0 (3) N4—C11—C12—F5 151.1 (3)
N1—C1—C2—F1 25.8 (4) N3—C11—C12—F6 94.0 (3)
N2—C1—C2—F1 −150.3 (3) N4—C11—C12—F6 −89.9 (3)
C1—N2—C3—C4 112.6 (3) C11—N4—C13—C14 −112.2 (3)
C1—N2—C4—C3 −112.5 (3) C11—N4—C14—C13 113.6 (3)
C1—N1—C5—C10 −145.7 (3) C11—N3—C15—C16 −41.6 (4)
C1—N1—C5—C6 40.9 (4) C11—N3—C15—C20 145.2 (3)
C10—C5—C6—C7 1.3 (5) C20—C15—C16—C17 −1.3 (5)
N1—C5—C6—C7 174.6 (3) N3—C15—C16—C17 −174.3 (3)
C5—C6—C7—C8 0.3 (5) C15—C16—C17—C18 0.1 (5)
C6—C7—C8—C9 −0.9 (5) C16—C17—C18—C19 0.2 (5)
C6—C7—C8—Br1 −179.6 (2) C16—C17—C18—Br2 179.6 (2)
C7—C8—C9—C10 −0.2 (5) C17—C18—C19—C20 0.7 (5)
Br1—C8—C9—C10 178.5 (2) Br2—C18—C19—C20 −178.7 (2)
C8—C9—C10—C5 1.9 (5) C18—C19—C20—C15 −1.9 (5)
C6—C5—C10—C9 −2.5 (5) C16—C15—C20—C19 2.2 (5)
N1—C5—C10—C9 −176.0 (3) N3—C15—C20—C19 175.7 (3)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: CV5449).

References

  1. Armstrong, R. W., Tellew, J. E. & Moran, E. J. (1996). Tetrahedron Lett 37, 447–450.
  2. Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Bruker (2003). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2005). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Chinnakali, K., Fun, H.-K., Sriraghavan, K., Ramakrishnan, V. T. & Razak, I. A. (1998). Acta Cryst. C54, 1299–1301.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Katoh, T., Itoh, E., Yoshino, T. & Terashima, S. (1996). Tetrahedron Lett 37, 3471–3474.
  8. McCoull, W. & Davis, F. A. (2000). Synthesis, pp. 1347–1365.
  9. McLaren, A. B. & Sweeney, J. B. (1999). Org. Lett 1, 1339–1341.
  10. Moragas Solà, T., Lewis, W., Bettigeri, S. V., Stockman, R. A. & Forbes, D. C. (2010). Acta Cryst. E66, o3335. [DOI] [PMC free article] [PubMed]
  11. Remers, W. A. & Iyengar, B. C. (1995). Cancer Chemother. Agents, pp. 584–592.
  12. Schirmeister, T. (1999a). Biopolym. Pept. Sci. 51, 87–97. [DOI] [PubMed]
  13. Schirmeister, T. (1999b). J. Med. Chem 42, 560–572. [DOI] [PubMed]
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Tanner, D. (1994). Angew. Chem. Int. Ed 33, 599–619.
  16. Zhu, J., Zhang, M.-J., Liu, Q.-W. & Pan, Z.-H. (2006). Acta Cryst. E62, o1507–o1508.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814007867/cv5449sup1.cif

e-70-0o550-sup1.cif (28.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007867/cv5449Isup2.hkl

e-70-0o550-Isup2.hkl (300.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007867/cv5449Isup3.cml

CCDC reference: 996162

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES