Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 12;70(Pt 5):o544. doi: 10.1107/S1600536814007752

5,8-Dimeth­oxy-3,9-dimethyl-3a,4,9,9a-tetra­hydro-4,9-ep­oxy­naphtho­[2,3-d]isoxazole

Alan J Lough a,*, Jaipal R Nagireddy b, William Tam b
PMCID: PMC4011229  PMID: 24860352

Abstract

The title compound, C15H17NO4, is the exo isomer with a syn arrangement of the O atom in the isoxazole ring to the methyl group of the bicyclic alkene. The dihedral angle between the isoxazole ring and the benzene ring is 7.42 (9)°. In the crystal, weak C—H⋯O hydrogen bonds link mol­ecules, forming a three-dimensional network. The isoxazole O atom is an acceptor for both weak hydrogen bonds.

Related literature  

For 1,3-dipolar cyclo­addition reactions of symmetrical and unsymmetrical bicyclic alkenes, see: Yip et al. (2001); Mayo et al. (2001). For a related structure, see: Lough et al. (2014).graphic file with name e-70-0o544-scheme1.jpg

Experimental  

Crystal data  

  • C15H17NO4

  • M r = 275.29

  • Monoclinic, Inline graphic

  • a = 9.0608 (12) Å

  • b = 14.3998 (17) Å

  • c = 10.1631 (12) Å

  • β = 104.835 (3)°

  • V = 1281.8 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 147 K

  • 0.32 × 0.16 × 0.14 mm

Data collection  

  • Bruker Kappa APEX DUO CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2012) T min = 0.660, T max = 0.746

  • 11844 measured reflections

  • 2937 independent reflections

  • 2271 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.097

  • S = 1.05

  • 2937 reflections

  • 185 parameters

  • H-atom parameters constrained

  • Δρmax = 0.28 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007752/is5351sup1.cif

e-70-0o544-sup1.cif (368.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007752/is5351Isup2.hkl

e-70-0o544-Isup2.hkl (161.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007752/is5351Isup3.cml

CCDC reference: 995953

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O2i 1.00 2.35 3.2928 (17) 156
C14—H14C⋯O2ii 0.98 2.59 3.5340 (19) 161

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

This work was supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

supplementary crystallographic information

1. Comment

We have previously investigated the 1,3-dipolar cycloaddition reactions of symmetrical and unsymmetrical bicyclic alkenes (Yip et al., 2001; Mayo et al., 2001). When expanding this reaction with C1-substituted oxabenzonorbornadienes, the bicyclic alkene (III) reacts (see Fig. 1) with acetonitrile oxide (II) (generated in situ) in toluene, to give the cycloadducts (IV) and (V) as regioisomers in the ratio of 89:11 respectively (ratio was determined by 1H NMR). The stereochemistry and regiochemistry of the major product (IV) was determined by this single-crystal X-ray analysis. Although different stereoisomers (exo and endo) could be formed, only the exo stereoisomer was formed with a mixture of the corresponding regioisomers. The major product (IV) obtained was found to be the product with the oxygen of the nitrile oxide syn to the C1-methyl group of the bicyclic alkene.

The molecular structure of the title compound is shown in Fig. 2. The dihedral angle between the isoxazole ring (C4/C5/C6/O2/N1 with an r.m.s. deviation 0.0125 Å) and the benzene ring (C8–C13) is 7.42 (9)°. In the crystal, weak C—H···O hydrogen bonds link molecules forming a three-dimensional network (Fig. 3). The isoxazole O atom is an acceptor for both weak hydrogen bonds. We have prepared by a similar method and carried out the structure determination of a related cycloadduct (Lough et al., 2014)

2. Experimental

A solution of nitroethane (I) (130.0 mg, 1.733 mmol) in toluene (2 ml) was added to a flame-dried flask containing bicyclic alkene (II) (140 mg, 0.642 mmol), (BOC)2O (233.7 mg, 1.07 mmol), DMAP (9.4 mg, 0.077 mmol) and toluene (6 ml) via a cannula over 10 minutes. The reaction mixture was stirred at room temperature for 18 h. The solvent was removed by rotary evaporation, and the crude product was purified by column chromatography (EtOAc:hexanes = 1:9 to 8:2) followed by recrystallization in methanol to give cycloadduct (IV) in 70% yield. Recrystallization of a solution of the title compound in MeOH provided crystals suitable for X-ray diffraction.

3. Refinement

Hydrogen atoms were placed in calculated positions with C—H distances of 0.95–1.00 Å and included in the refinement in a riding-model approximation with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.

Fig. 1.

The reaction scheme.

Fig. 2.

Fig. 2.

The molecular structure of the title compound showing 30% probability ellipsoids.

Fig. 3.

Fig. 3.

Part of the crystal structure with weak hydrogen bonds shown as dashed lines.

Crystal data

C15H17NO4 F(000) = 584
Mr = 275.29 Dx = 1.427 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 9.0608 (12) Å Cell parameters from 2761 reflections
b = 14.3998 (17) Å θ = 2.5–27.5°
c = 10.1631 (12) Å µ = 0.10 mm1
β = 104.835 (3)° T = 147 K
V = 1281.8 (3) Å3 Needle, colourless
Z = 4 0.32 × 0.16 × 0.14 mm

Data collection

Bruker Kappa APEX DUO CCD diffractometer 2271 reflections with I > 2σ(I)
Radiation source: sealed tube with Bruker Triumph monochromator Rint = 0.041
φ and ω scans θmax = 27.5°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −11→11
Tmin = 0.660, Tmax = 0.746 k = −18→17
11844 measured reflections l = −11→13
2937 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0459P)2 + 0.2574P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
2937 reflections Δρmax = 0.28 e Å3
185 parameters Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.50314 (11) 0.25637 (7) 0.36251 (9) 0.0158 (2)
O2 0.59142 (11) 0.27152 (7) 0.66027 (10) 0.0199 (2)
O3 0.27204 (11) 0.49102 (7) 0.15675 (10) 0.0217 (2)
O4 0.89378 (11) 0.43196 (7) 0.37701 (10) 0.0205 (2)
N1 0.44029 (14) 0.24274 (9) 0.65909 (12) 0.0200 (3)
C1 0.39743 (15) 0.33293 (10) 0.34640 (13) 0.0147 (3)
H1A 0.2909 0.3190 0.2927 0.018*
C2 0.63942 (15) 0.30606 (9) 0.43544 (13) 0.0147 (3)
C3 0.77661 (17) 0.24375 (10) 0.46760 (15) 0.0201 (3)
H3A 0.8081 0.2309 0.3841 0.030*
H3B 0.7510 0.1853 0.5060 0.030*
H3C 0.8603 0.2743 0.5338 0.030*
C4 0.58557 (15) 0.34340 (10) 0.55933 (13) 0.0148 (3)
H4A 0.6418 0.4007 0.5992 0.018*
C5 0.41454 (15) 0.36162 (10) 0.49764 (13) 0.0141 (3)
H5A 0.3833 0.4272 0.5086 0.017*
C6 0.34470 (16) 0.29242 (10) 0.57416 (14) 0.0162 (3)
C7 0.17703 (16) 0.27995 (11) 0.55319 (15) 0.0203 (3)
H7A 0.1580 0.2282 0.6092 0.030*
H7B 0.1300 0.2665 0.4570 0.030*
H7C 0.1328 0.3369 0.5795 0.030*
C8 0.47998 (16) 0.40647 (10) 0.28645 (13) 0.0145 (3)
C9 0.42749 (16) 0.48105 (10) 0.20091 (14) 0.0163 (3)
C10 0.53678 (17) 0.53792 (10) 0.16776 (14) 0.0178 (3)
H10A 0.5052 0.5885 0.1070 0.021*
C11 0.69228 (17) 0.52157 (10) 0.22265 (14) 0.0182 (3)
H11A 0.7647 0.5609 0.1976 0.022*
C12 0.74383 (16) 0.44869 (10) 0.31354 (13) 0.0153 (3)
C13 0.63422 (15) 0.39029 (9) 0.34279 (13) 0.0144 (3)
C14 0.21634 (18) 0.57380 (10) 0.08270 (15) 0.0220 (3)
H14A 0.1046 0.5751 0.0622 0.033*
H14B 0.2481 0.5748 −0.0025 0.033*
H14C 0.2581 0.6282 0.1376 0.033*
C15 1.00530 (17) 0.47219 (11) 0.31725 (16) 0.0227 (3)
H15A 1.1070 0.4499 0.3652 0.034*
H15B 1.0019 0.5400 0.3244 0.034*
H15C 0.9835 0.4543 0.2212 0.034*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0159 (5) 0.0130 (5) 0.0180 (5) −0.0010 (4) 0.0035 (4) −0.0021 (4)
O2 0.0152 (5) 0.0255 (6) 0.0188 (5) 0.0024 (4) 0.0042 (4) 0.0073 (4)
O3 0.0169 (5) 0.0212 (6) 0.0255 (5) 0.0018 (4) 0.0029 (4) 0.0078 (4)
O4 0.0145 (5) 0.0259 (6) 0.0217 (5) −0.0024 (4) 0.0057 (4) 0.0032 (4)
N1 0.0188 (6) 0.0216 (7) 0.0211 (6) −0.0009 (5) 0.0077 (5) 0.0020 (5)
C1 0.0149 (7) 0.0139 (7) 0.0149 (6) −0.0003 (5) 0.0031 (5) −0.0003 (5)
C2 0.0140 (7) 0.0143 (7) 0.0161 (6) −0.0012 (5) 0.0044 (5) −0.0019 (5)
C3 0.0192 (8) 0.0183 (7) 0.0240 (7) 0.0035 (6) 0.0077 (6) 0.0010 (6)
C4 0.0161 (7) 0.0142 (7) 0.0144 (6) 0.0005 (5) 0.0043 (5) 0.0010 (5)
C5 0.0140 (7) 0.0133 (7) 0.0153 (6) −0.0003 (5) 0.0044 (5) −0.0005 (5)
C6 0.0197 (7) 0.0140 (7) 0.0159 (6) −0.0006 (6) 0.0065 (5) −0.0013 (5)
C7 0.0180 (8) 0.0220 (8) 0.0228 (7) −0.0016 (6) 0.0088 (6) 0.0004 (6)
C8 0.0171 (7) 0.0139 (7) 0.0135 (6) −0.0013 (5) 0.0055 (5) −0.0025 (5)
C9 0.0171 (7) 0.0177 (7) 0.0140 (6) 0.0011 (6) 0.0035 (5) −0.0008 (5)
C10 0.0241 (8) 0.0148 (7) 0.0149 (6) 0.0005 (6) 0.0058 (6) 0.0009 (5)
C11 0.0219 (8) 0.0173 (7) 0.0176 (7) −0.0046 (6) 0.0092 (6) −0.0027 (6)
C12 0.0151 (7) 0.0175 (7) 0.0144 (6) −0.0007 (6) 0.0060 (5) −0.0031 (5)
C13 0.0178 (7) 0.0133 (7) 0.0127 (6) 0.0007 (5) 0.0048 (5) −0.0026 (5)
C14 0.0232 (8) 0.0204 (8) 0.0209 (7) 0.0060 (6) 0.0029 (6) 0.0048 (6)
C15 0.0165 (7) 0.0279 (8) 0.0256 (8) −0.0038 (6) 0.0091 (6) 0.0005 (6)

Geometric parameters (Å, º)

O1—C1 1.4420 (16) C5—C6 1.5001 (19)
O1—C2 1.4550 (16) C5—H5A 1.0000
O2—N1 1.4278 (16) C6—C7 1.490 (2)
O2—C4 1.4487 (16) C7—H7A 0.9800
O3—C9 1.3719 (17) C7—H7B 0.9800
O3—C14 1.4309 (17) C7—H7C 0.9800
O4—C12 1.3680 (17) C8—C9 1.387 (2)
O4—C15 1.4282 (17) C8—C13 1.3877 (19)
N1—C6 1.2744 (19) C9—C10 1.391 (2)
C1—C8 1.5118 (18) C10—C11 1.396 (2)
C1—C5 1.5605 (18) C10—H10A 0.9500
C1—H1A 1.0000 C11—C12 1.397 (2)
C2—C3 1.4997 (19) C11—H11A 0.9500
C2—C13 1.5288 (19) C12—C13 1.3903 (19)
C2—C4 1.5580 (18) C14—H14A 0.9800
C3—H3A 0.9800 C14—H14B 0.9800
C3—H3B 0.9800 C14—H14C 0.9800
C3—H3C 0.9800 C15—H15A 0.9800
C4—C5 1.5381 (18) C15—H15B 0.9800
C4—H4A 1.0000 C15—H15C 0.9800
C1—O1—C2 97.72 (10) C7—C6—C5 123.78 (12)
N1—O2—C4 109.89 (10) C6—C7—H7A 109.5
C9—O3—C14 116.97 (11) C6—C7—H7B 109.5
C12—O4—C15 116.97 (11) H7A—C7—H7B 109.5
C6—N1—O2 109.07 (11) C6—C7—H7C 109.5
O1—C1—C8 101.45 (10) H7A—C7—H7C 109.5
O1—C1—C5 101.24 (10) H7B—C7—H7C 109.5
C8—C1—C5 106.07 (11) C9—C8—C13 122.42 (13)
O1—C1—H1A 115.4 C9—C8—C1 132.02 (13)
C8—C1—H1A 115.4 C13—C8—C1 105.43 (12)
C5—C1—H1A 115.4 O3—C9—C8 116.40 (12)
O1—C2—C3 111.39 (11) O3—C9—C10 126.44 (13)
O1—C2—C13 100.84 (10) C8—C9—C10 117.16 (13)
C3—C2—C13 120.13 (12) C9—C10—C11 120.80 (13)
O1—C2—C4 100.42 (10) C9—C10—H10A 119.6
C3—C2—C4 116.36 (11) C11—C10—H10A 119.6
C13—C2—C4 104.91 (11) C10—C11—C12 121.55 (13)
C2—C3—H3A 109.5 C10—C11—H11A 119.2
C2—C3—H3B 109.5 C12—C11—H11A 119.2
H3A—C3—H3B 109.5 O4—C12—C13 118.06 (12)
C2—C3—H3C 109.5 O4—C12—C11 124.58 (13)
H3A—C3—H3C 109.5 C13—C12—C11 117.35 (13)
H3B—C3—H3C 109.5 C8—C13—C12 120.62 (13)
O2—C4—C5 105.12 (11) C8—C13—C2 104.85 (12)
O2—C4—C2 111.31 (11) C12—C13—C2 134.47 (13)
C5—C4—C2 102.75 (10) O3—C14—H14A 109.5
O2—C4—H4A 112.3 O3—C14—H14B 109.5
C5—C4—H4A 112.3 H14A—C14—H14B 109.5
C2—C4—H4A 112.3 O3—C14—H14C 109.5
C6—C5—C4 100.96 (11) H14A—C14—H14C 109.5
C6—C5—C1 112.71 (11) H14B—C14—H14C 109.5
C4—C5—C1 101.07 (11) O4—C15—H15A 109.5
C6—C5—H5A 113.6 O4—C15—H15B 109.5
C4—C5—H5A 113.6 H15A—C15—H15B 109.5
C1—C5—H5A 113.6 O4—C15—H15C 109.5
N1—C6—C7 121.36 (13) H15A—C15—H15C 109.5
N1—C6—C5 114.85 (13) H15B—C15—H15C 109.5
C4—O2—N1—C6 −3.33 (15) O1—C1—C8—C13 −32.41 (13)
C2—O1—C1—C8 51.19 (11) C5—C1—C8—C13 72.97 (13)
C2—O1—C1—C5 −57.97 (11) C14—O3—C9—C8 172.37 (12)
C1—O1—C2—C3 −179.30 (11) C14—O3—C9—C10 −8.0 (2)
C1—O1—C2—C13 −50.69 (11) C13—C8—C9—O3 −177.44 (12)
C1—O1—C2—C4 56.86 (11) C1—C8—C9—O3 −2.2 (2)
N1—O2—C4—C5 2.76 (13) C13—C8—C9—C10 2.9 (2)
N1—O2—C4—C2 −107.78 (12) C1—C8—C9—C10 178.11 (13)
O1—C2—C4—O2 78.42 (12) O3—C9—C10—C11 178.30 (13)
C3—C2—C4—O2 −41.92 (16) C8—C9—C10—C11 −2.1 (2)
C13—C2—C4—O2 −177.29 (11) C9—C10—C11—C12 −0.8 (2)
O1—C2—C4—C5 −33.63 (12) C15—O4—C12—C13 161.27 (12)
C3—C2—C4—C5 −153.97 (12) C15—O4—C12—C11 −19.88 (19)
C13—C2—C4—C5 70.66 (12) C10—C11—C12—O4 −176.08 (12)
O2—C4—C5—C6 −1.30 (13) C10—C11—C12—C13 2.8 (2)
C2—C4—C5—C6 115.27 (11) C9—C8—C13—C12 −0.9 (2)
O2—C4—C5—C1 −117.31 (11) C1—C8—C13—C12 −177.18 (12)
C2—C4—C5—C1 −0.74 (13) C9—C8—C13—C2 176.63 (12)
O1—C1—C5—C6 −71.58 (13) C1—C8—C13—C2 0.31 (13)
C8—C1—C5—C6 −177.12 (11) O4—C12—C13—C8 176.95 (12)
O1—C1—C5—C4 35.38 (12) C11—C12—C13—C8 −1.98 (19)
C8—C1—C5—C4 −70.15 (13) O4—C12—C13—C2 0.3 (2)
O2—N1—C6—C7 −178.46 (12) C11—C12—C13—C2 −178.59 (14)
O2—N1—C6—C5 2.48 (16) O1—C2—C13—C8 31.49 (13)
C4—C5—C6—N1 −0.72 (15) C3—C2—C13—C8 154.22 (12)
C1—C5—C6—N1 106.32 (14) C4—C2—C13—C8 −72.49 (13)
C4—C5—C6—C7 −179.75 (13) O1—C2—C13—C12 −151.53 (15)
C1—C5—C6—C7 −72.71 (17) C3—C2—C13—C12 −28.8 (2)
O1—C1—C8—C9 151.77 (14) C4—C2—C13—C12 104.49 (17)
C5—C1—C8—C9 −102.85 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O2i 1.00 2.35 3.2928 (17) 156
C14—H14C···O2ii 0.98 2.59 3.5340 (19) 161

Symmetry codes: (i) x−1/2, −y+1/2, z−1/2; (ii) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IS5351).

References

  1. Bruker (2012). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Lough, A. J., Nagireddy, J. R. & Tam, W. (2014). Acta Cryst. E70, o543. [DOI] [PMC free article] [PubMed]
  3. Mayo, P., Hecnar, T. & Tam, W. (2001). Tetrahedron, 57, 5931–5941.
  4. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  5. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  6. Yip, C., Handerson, S., Tranmer, G. K. & Tam, W. (2001). J. Org. Chem. 66, 276–286. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007752/is5351sup1.cif

e-70-0o544-sup1.cif (368.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007752/is5351Isup2.hkl

e-70-0o544-Isup2.hkl (161.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007752/is5351Isup3.cml

CCDC reference: 995953

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES