Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 26;70(Pt 5):o606. doi: 10.1107/S1600536814009106

(R)-[(R)-3-Benzyl-2-oxooxazolidin-4-yl][4-(methyl­sulfon­yl)phen­yl]methyl acetate

Feng Li a, Ming-Zhong Zhao b, Chun-Hua Jin a,*, Jian-Wei Zou a
PMCID: PMC4011233  PMID: 24860399

Abstract

The structure of the title compound, C20H21NO6S, is of inter­est with respect to its anti­bacterial properties. The oxazolidine ring makes dihedral angles of 79.63 (14) and 56.16 (12)° with the phenyl and benzene rings, respectively, while the phenyl and benzene rings make a dihedral angle of 64.37 (13)°. In the crystal, non-classical C—H⋯O hydrogen bonds link adjacent mol­ecules along the c axis.

Related literature  

For the original synthesis of the title compound, see: Li et al. (2011). For inversion of the configuration of the sulfonyloxy moiety, see: Shi et al. (2010). For background to the anti-bacterial properties of thia­mphenicol-like compounds, see: Nagabhushan (1980, 1981); Jommi et al. (1985).graphic file with name e-70-0o606-scheme1.jpg

Experimental  

Crystal data  

  • C20H21NO6S

  • M r = 403.44

  • Monoclinic, Inline graphic

  • a = 5.837 (3) Å

  • b = 21.021 (10) Å

  • c = 7.884 (4) Å

  • β = 100.256 (7)°

  • V = 952.0 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.21 mm−1

  • T = 296 K

  • 0.30 × 0.25 × 0.16 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2000) T min = 0.940, T max = 0.968

  • 6495 measured reflections

  • 3658 independent reflections

  • 3254 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.091

  • S = 1.02

  • 3658 reflections

  • 255 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.14 e Å−3

  • Δρmin = −0.17 e Å−3

  • Absolute structure: Flack (1983), 1356 Friedel pairs

  • Absolute structure parameter: −0.06 (6)

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814009106/hg5390sup1.cif

e-70-0o606-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009106/hg5390Isup2.hkl

e-70-0o606-Isup2.hkl (179.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814009106/hg5390Isup3.cdx

Supporting information file. DOI: 10.1107/S1600536814009106/hg5390Isup4.cml

CCDC reference: 998863

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7A⋯O4i 0.97 2.52 3.373 (3) 147
C10—H10⋯O6i 0.98 2.54 3.384 (3) 144
C13—H13C⋯O1ii 0.96 2.55 3.305 (3) 135

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professor Xiang-shan Wang for his help and advice in the solution of the crystal structure.

supplementary crystallographic information

1. Comment

During the study on the synthesis of florfenicol, a class of anti­biotics with pronounced broad-spectrum anti­bacterial activity, (Nagabhushan, 1980 & Jommi et al., 1985). the title compound was produced and is a key inter­mediate in the synthetic route to florfenicol (Li et al., 2011). The title compound was synthesized through the nucleophilic substitution reaction of (S)-((R)-3-benzyl-2-oxooxazolidin-4-yl)(4-(methyl­sulfonyl) phenyl)­methyl­methane sulfonate. Here we report the crystal structure of the title compound.

Fig. 1 shows the molecular structure of the title compound. The enanti­omer was selected on the basis of the configuration of the starting material. All chiral carbon atoms (C10 and C11) are R-configuration. Only one molecule is included in the asymmetrical unit of this compound (Fig. 1). All the bond lengths and relevant angles are in the typical ranges. Although there is no –NH or –OH group available in the structure to form strong hydrogen bonds, the C atoms are involved in the formation of non-classical inter-molecular C—H···O hydrogen bonds (Fig 2).

2. Experimental

The literature procedure according to Li et al. (2011) was followed. A solution of 1,8-di­aza­bicyclo­[5.4.0]undec-7-ene (700 mg, 4.56 mmol) and glacial acetic acid (550 mg, 9.11 mmol) in anhydrous toluene (5 mL) was stirred for 1.5 h at room temperature. (S)-((R)-3-benzyl-2-oxooxazolidin-4-yl)(4-(methyl­sulfonyl)­phenyl)­methyl­methane­sulfonate was added and the reaction mixture was heated to 363 K for 8 h. The resulting mixture was cooled to r.t., diluted with CH2Cl2 (40 mL) and washed with 2M aq. HCl (30 mL), 10% aq. K2CO3 (30 mL), and brine (30 mL) successively. The organic phase was dried over Na2SO4, concentrated in vacuo. The residue was purified by flash chromatography to afford the title compound 850 mg (92%) as a white solid. Suitable crystals for X-ray experiments were obtained by slow evaporation from an AcOEt/CHCl3 solution at room temperature.

2.1. Refinement

Hydrogen atoms bonded to the carbon atoms were placed in calculated positions and refined as riding mode, with C—H = 0.93Å (methane) or 0.96Å (methyl) and Uiso(H) = 1.2Ueq (Cmethane) or Uiso(H) = 1.5Ueq (Cmethyl).

Figures

Fig. 1.

Fig. 1.

The ORTEP view of the title compound with 30% probability level ellipsoids.

Fig. 2.

Fig. 2.

The molecular packing diagram of the title compound.

Crystal data

C20H21NO6S F(000) = 424
Mr = 403.44 Dx = 1.407 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2yb Cell parameters from 2349 reflections
a = 5.837 (3) Å θ = 2.6–25.3°
b = 21.021 (10) Å µ = 0.21 mm1
c = 7.884 (4) Å T = 296 K
β = 100.256 (7)° Block, colourless
V = 952.0 (7) Å3 0.30 × 0.25 × 0.16 mm
Z = 2

Data collection

Bruker SMART CCD area-detector diffractometer 3658 independent reflections
Radiation source: fine-focus sealed tube 3254 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
phi and ω scans θmax = 27.8°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2000) h = −7→7
Tmin = 0.940, Tmax = 0.968 k = −19→27
6495 measured reflections l = −10→9

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035 H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0516P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
3658 reflections Δρmax = 0.14 e Å3
255 parameters Δρmin = −0.17 e Å3
1 restraint Absolute structure: Flack (1983), 1356 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.06 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.2302 (4) 1.05248 (14) 1.2707 (4) 0.0558 (6)
H1 0.1259 1.0324 1.3295 0.067*
C2 0.1916 (6) 1.11380 (17) 1.2191 (5) 0.0781 (10)
H2 0.0605 1.1349 1.2422 0.094*
C3 0.3431 (7) 1.14521 (16) 1.1331 (5) 0.0833 (11)
H3 0.3155 1.1872 1.0981 0.100*
C4 0.5382 (6) 1.11300 (16) 1.0994 (4) 0.0701 (9)
H4 0.6428 1.1335 1.0417 0.084*
C5 0.5769 (4) 1.05031 (13) 1.1517 (3) 0.0506 (6)
H5 0.7077 1.0290 1.1290 0.061*
C6 0.4227 (4) 1.01946 (11) 1.2373 (3) 0.0395 (5)
C7 0.4569 (4) 0.95231 (11) 1.3036 (3) 0.0418 (5)
H7A 0.5095 0.9540 1.4274 0.050*
H7B 0.3070 0.9311 1.2832 0.050*
C8 0.8331 (4) 0.90008 (12) 1.3230 (3) 0.0418 (5)
C9 0.7678 (4) 0.82331 (14) 1.1163 (3) 0.0491 (6)
H9A 0.7290 0.7800 1.1428 0.059*
H9B 0.8324 0.8231 1.0112 0.059*
C10 0.5504 (3) 0.86602 (11) 1.0957 (3) 0.0347 (4)
H10 0.4169 0.8418 1.1206 0.042*
C11 0.4959 (3) 0.89357 (10) 0.9143 (2) 0.0325 (4)
H11 0.6286 0.9188 0.8923 0.039*
C12 0.2825 (4) 0.98383 (11) 0.7947 (3) 0.0401 (5)
C13 0.0631 (5) 1.02073 (14) 0.7899 (3) 0.0567 (7)
H13A 0.0890 1.0643 0.7625 0.085*
H13B 0.0163 1.0185 0.9005 0.085*
H13C −0.0571 1.0031 0.7037 0.085*
C14 0.4399 (3) 0.84297 (10) 0.7772 (2) 0.0329 (4)
C15 0.2402 (4) 0.80602 (13) 0.7690 (3) 0.0453 (6)
H15 0.1481 0.8107 0.8531 0.054*
C16 0.1773 (4) 0.76262 (12) 0.6378 (3) 0.0435 (5)
H16 0.0425 0.7386 0.6324 0.052*
C17 0.3164 (3) 0.75514 (10) 0.5144 (2) 0.0343 (4)
C18 0.5208 (4) 0.78958 (12) 0.5248 (3) 0.0394 (5)
H18 0.6177 0.7831 0.4447 0.047*
C19 0.5795 (3) 0.83348 (11) 0.6545 (3) 0.0380 (5)
H19 0.7151 0.8572 0.6600 0.046*
C20 0.4084 (5) 0.63552 (13) 0.3899 (3) 0.0563 (6)
H20A 0.3814 0.6170 0.4959 0.084*
H20B 0.5685 0.6483 0.4022 0.084*
H20C 0.3739 0.6048 0.2988 0.084*
N1 0.6212 (3) 0.91344 (9) 1.2290 (2) 0.0373 (4)
O1 0.9319 (3) 0.92759 (11) 1.4488 (2) 0.0607 (5)
O2 0.9295 (3) 0.84974 (9) 1.2545 (2) 0.0530 (4)
O3 0.2955 (2) 0.93443 (7) 0.90796 (18) 0.0374 (3)
O4 0.4311 (3) 0.99426 (10) 0.7128 (2) 0.0566 (5)
O5 −0.0080 (3) 0.68428 (10) 0.3436 (2) 0.0585 (5)
O6 0.2809 (3) 0.73099 (10) 0.1869 (2) 0.0574 (5)
S1 0.22845 (9) 0.70219 (3) 0.34050 (6) 0.03925 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0543 (14) 0.0493 (16) 0.0618 (15) 0.0027 (12) 0.0052 (11) −0.0131 (13)
C2 0.078 (2) 0.0510 (19) 0.098 (2) 0.0168 (16) −0.0056 (18) −0.0156 (19)
C3 0.121 (3) 0.0371 (17) 0.078 (2) 0.0108 (18) −0.020 (2) 0.0006 (15)
C4 0.105 (2) 0.0517 (18) 0.0496 (15) −0.0264 (18) 0.0039 (15) 0.0018 (13)
C5 0.0619 (14) 0.0468 (15) 0.0438 (12) −0.0066 (12) 0.0115 (11) 0.0000 (11)
C6 0.0452 (11) 0.0367 (12) 0.0348 (10) −0.0035 (9) 0.0024 (8) −0.0088 (9)
C7 0.0467 (11) 0.0398 (13) 0.0421 (11) 0.0015 (10) 0.0171 (9) −0.0043 (10)
C8 0.0404 (10) 0.0444 (14) 0.0412 (11) −0.0061 (10) 0.0089 (9) 0.0045 (11)
C9 0.0546 (13) 0.0496 (15) 0.0416 (11) 0.0159 (11) 0.0044 (9) −0.0041 (11)
C10 0.0395 (10) 0.0320 (11) 0.0328 (10) 0.0023 (9) 0.0073 (8) 0.0002 (8)
C11 0.0349 (9) 0.0303 (11) 0.0326 (10) −0.0006 (8) 0.0066 (8) 0.0007 (8)
C12 0.0548 (12) 0.0301 (11) 0.0323 (10) 0.0006 (10) −0.0011 (9) −0.0026 (9)
C13 0.0597 (15) 0.0450 (15) 0.0611 (15) 0.0176 (12) −0.0013 (12) −0.0005 (13)
C14 0.0349 (10) 0.0312 (11) 0.0323 (9) 0.0023 (8) 0.0051 (7) 0.0027 (8)
C15 0.0449 (12) 0.0502 (15) 0.0455 (12) −0.0083 (11) 0.0206 (9) −0.0110 (11)
C16 0.0403 (11) 0.0418 (14) 0.0507 (12) −0.0106 (10) 0.0142 (9) −0.0058 (11)
C17 0.0405 (10) 0.0285 (11) 0.0326 (9) 0.0027 (8) 0.0028 (7) 0.0002 (8)
C18 0.0430 (11) 0.0425 (13) 0.0348 (10) −0.0046 (10) 0.0131 (8) −0.0015 (10)
C19 0.0380 (10) 0.0416 (13) 0.0356 (10) −0.0076 (9) 0.0099 (8) −0.0011 (9)
C20 0.0684 (15) 0.0354 (13) 0.0610 (15) 0.0102 (12) 0.0003 (12) −0.0033 (12)
N1 0.0405 (9) 0.0381 (11) 0.0339 (9) 0.0046 (8) 0.0082 (7) −0.0027 (8)
O1 0.0568 (9) 0.0691 (13) 0.0514 (10) −0.0151 (9) −0.0030 (7) −0.0109 (10)
O2 0.0398 (8) 0.0539 (11) 0.0615 (10) 0.0085 (8) −0.0013 (7) −0.0069 (9)
O3 0.0427 (7) 0.0306 (8) 0.0391 (7) 0.0057 (6) 0.0080 (6) 0.0016 (6)
O4 0.0711 (11) 0.0478 (11) 0.0528 (10) −0.0009 (9) 0.0166 (8) 0.0124 (9)
O5 0.0465 (9) 0.0559 (12) 0.0697 (11) −0.0093 (8) 0.0005 (8) −0.0189 (9)
O6 0.0903 (13) 0.0467 (11) 0.0347 (8) −0.0012 (10) 0.0100 (7) −0.0013 (8)
S1 0.0475 (3) 0.0299 (2) 0.0381 (3) 0.0003 (2) 0.0016 (2) −0.0037 (2)

Geometric parameters (Å, º)

C1—C2 1.359 (5) C11—C14 1.511 (3)
C1—C6 1.385 (3) C11—H11 0.9800
C1—H1 0.9300 C12—O4 1.191 (3)
C2—C3 1.375 (5) C12—O3 1.363 (3)
C2—H2 0.9300 C12—C13 1.492 (3)
C3—C4 1.391 (5) C13—H13A 0.9600
C3—H3 0.9300 C13—H13B 0.9600
C4—C5 1.387 (4) C13—H13C 0.9600
C4—H4 0.9300 C14—C19 1.385 (3)
C5—C6 1.379 (3) C14—C15 1.393 (3)
C5—H5 0.9300 C15—C16 1.379 (3)
C6—C7 1.506 (3) C15—H15 0.9300
C7—N1 1.461 (3) C16—C17 1.383 (3)
C7—H7A 0.9700 C16—H16 0.9300
C7—H7B 0.9700 C17—C18 1.385 (3)
C8—O1 1.203 (3) C17—S1 1.769 (2)
C8—N1 1.354 (3) C18—C19 1.374 (3)
C8—O2 1.355 (3) C18—H18 0.9300
C9—O2 1.421 (3) C19—H19 0.9300
C9—C10 1.539 (3) C20—S1 1.753 (3)
C9—H9A 0.9700 C20—H20A 0.9600
C9—H9B 0.9700 C20—H20B 0.9600
C10—N1 1.454 (3) C20—H20C 0.9600
C10—C11 1.523 (3) O5—S1 1.4353 (18)
C10—H10 0.9800 O6—S1 1.4346 (19)
C11—O3 1.445 (2)
C2—C1—C6 121.0 (3) O4—C12—O3 122.3 (2)
C2—C1—H1 119.5 O4—C12—C13 126.5 (2)
C6—C1—H1 119.5 O3—C12—C13 111.1 (2)
C1—C2—C3 121.1 (3) C12—C13—H13A 109.5
C1—C2—H2 119.5 C12—C13—H13B 109.5
C3—C2—H2 119.5 H13A—C13—H13B 109.5
C2—C3—C4 118.7 (3) C12—C13—H13C 109.5
C2—C3—H3 120.6 H13A—C13—H13C 109.5
C4—C3—H3 120.6 H13B—C13—H13C 109.5
C5—C4—C3 120.1 (3) C19—C14—C15 118.6 (2)
C5—C4—H4 120.0 C19—C14—C11 121.46 (18)
C3—C4—H4 120.0 C15—C14—C11 119.88 (17)
C6—C5—C4 120.4 (3) C16—C15—C14 120.81 (19)
C6—C5—H5 119.8 C16—C15—H15 119.6
C4—C5—H5 119.8 C14—C15—H15 119.6
C5—C6—C1 118.7 (2) C15—C16—C17 119.47 (19)
C5—C6—C7 123.6 (2) C15—C16—H16 120.3
C1—C6—C7 117.7 (2) C17—C16—H16 120.3
N1—C7—C6 116.12 (18) C16—C17—C18 120.39 (19)
N1—C7—H7A 108.3 C16—C17—S1 119.40 (16)
C6—C7—H7A 108.3 C18—C17—S1 120.20 (15)
N1—C7—H7B 108.3 C19—C18—C17 119.54 (18)
C6—C7—H7B 108.3 C19—C18—H18 120.2
H7A—C7—H7B 107.4 C17—C18—H18 120.2
O1—C8—N1 127.5 (2) C18—C19—C14 121.09 (19)
O1—C8—O2 122.1 (2) C18—C19—H19 119.5
N1—C8—O2 110.35 (19) C14—C19—H19 119.5
O2—C9—C10 106.0 (2) S1—C20—H20A 109.5
O2—C9—H9A 110.5 S1—C20—H20B 109.5
C10—C9—H9A 110.5 H20A—C20—H20B 109.5
O2—C9—H9B 110.5 S1—C20—H20C 109.5
C10—C9—H9B 110.5 H20A—C20—H20C 109.5
H9A—C9—H9B 108.7 H20B—C20—H20C 109.5
N1—C10—C11 113.76 (18) C8—N1—C10 111.57 (18)
N1—C10—C9 101.58 (17) C8—N1—C7 119.80 (18)
C11—C10—C9 110.60 (17) C10—N1—C7 123.54 (17)
N1—C10—H10 110.2 C8—O2—C9 110.15 (17)
C11—C10—H10 110.2 C12—O3—C11 115.21 (16)
C9—C10—H10 110.2 O6—S1—O5 118.39 (12)
O3—C11—C14 108.86 (15) O6—S1—C20 108.39 (13)
O3—C11—C10 106.93 (14) O5—S1—C20 109.06 (13)
C14—C11—C10 112.74 (18) O6—S1—C17 108.20 (11)
O3—C11—H11 109.4 O5—S1—C17 107.41 (11)
C14—C11—H11 109.4 C20—S1—C17 104.53 (11)
C10—C11—H11 109.4
C6—C1—C2—C3 −0.5 (5) C17—C18—C19—C14 1.3 (3)
C1—C2—C3—C4 0.0 (5) C15—C14—C19—C18 1.4 (3)
C2—C3—C4—C5 0.2 (4) C11—C14—C19—C18 −176.6 (2)
C3—C4—C5—C6 0.0 (4) O1—C8—N1—C10 −174.6 (2)
C4—C5—C6—C1 −0.5 (3) O2—C8—N1—C10 6.3 (2)
C4—C5—C6—C7 −177.8 (2) O1—C8—N1—C7 −19.0 (3)
C2—C1—C6—C5 0.7 (4) O2—C8—N1—C7 161.91 (19)
C2—C1—C6—C7 178.2 (3) C11—C10—N1—C8 −122.93 (18)
C5—C6—C7—N1 −18.5 (3) C9—C10—N1—C8 −4.1 (2)
C1—C6—C7—N1 164.21 (19) C11—C10—N1—C7 82.5 (2)
O2—C9—C10—N1 0.6 (2) C9—C10—N1—C7 −158.6 (2)
O2—C9—C10—C11 121.7 (2) C6—C7—N1—C8 106.2 (2)
N1—C10—C11—O3 −64.6 (2) C6—C7—N1—C10 −101.2 (2)
C9—C10—C11—O3 −178.14 (18) O1—C8—O2—C9 175.1 (2)
N1—C10—C11—C14 175.82 (16) N1—C8—O2—C9 −5.7 (3)
C9—C10—C11—C14 62.3 (2) C10—C9—O2—C8 2.9 (3)
O3—C11—C14—C19 125.2 (2) O4—C12—O3—C11 −3.3 (3)
C10—C11—C14—C19 −116.3 (2) C13—C12—O3—C11 176.55 (18)
O3—C11—C14—C15 −52.7 (2) C14—C11—O3—C12 −86.7 (2)
C10—C11—C14—C15 65.8 (2) C10—C11—O3—C12 151.25 (17)
C19—C14—C15—C16 −2.5 (3) C16—C17—S1—O6 139.88 (19)
C11—C14—C15—C16 175.5 (2) C18—C17—S1—O6 −39.0 (2)
C14—C15—C16—C17 0.9 (4) C16—C17—S1—O5 11.0 (2)
C15—C16—C17—C18 1.8 (3) C18—C17—S1—O5 −167.86 (18)
C15—C16—C17—S1 −177.03 (19) C16—C17—S1—C20 −104.8 (2)
C16—C17—C18—C19 −3.0 (3) C18—C17—S1—C20 76.4 (2)
S1—C17—C18—C19 175.90 (18)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C7—H7A···O4i 0.97 2.52 3.373 (3) 147
C10—H10···O6i 0.98 2.54 3.384 (3) 144
C13—H13C···O1ii 0.96 2.55 3.305 (3) 135

Symmetry codes: (i) x, y, z+1; (ii) x−1, y, z−1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: HG5390).

References

  1. Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  3. Jommi, G., Pagliarin, R., Chiarino, D. & Fantucci, M. (1985). Gazz. Chim. Ital. 115, 653–658.
  4. Li, F., Wang, Z. H., Zhao, L., Xiong, F. J., He, Q. Q. & Chen, F. E. (2011). Tetrahedron Asymmetry, 22, 1337–1341.
  5. Nagabhushan, T. L. (1980). EP14437. Schering Corporation, USA.
  6. Nagabhushan, T. L. (1981). Chem Abstr 94, 139433.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Shi, X. X., Shen, C. L., Yao, J. Z., Nie, L. D. & Quan, N. (2010). Tetrahedron Asymmetry, 21, 277-284.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814009106/hg5390sup1.cif

e-70-0o606-sup1.cif (21.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814009106/hg5390Isup2.hkl

e-70-0o606-Isup2.hkl (179.3KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814009106/hg5390Isup3.cdx

Supporting information file. DOI: 10.1107/S1600536814009106/hg5390Isup4.cml

CCDC reference: 998863

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES