Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 26;70(Pt 5):o593–o594. doi: 10.1107/S1600536814008757

(E)-3-(4-Hy­droxy-3-meth­oxy­phen­yl)-1-(4-hy­droxy­phen­yl)prop-2-en-1-one

S Sathya a, D Reuben Jonathan b, K Prathebha a, G Usha a,*, J Jovita a
PMCID: PMC4011235  PMID: 24860391

Abstract

In the title compound, C16H14O4, there is an intra­molecular O—H⋯O hydrogen bond. The benzene rings are inclined to one another by 13.89 (9)°. The prop-2-en-1-one group is twisted slightly, the O=C—Car—Car (ar = aromatic) and C=C—C=O torsion angles being −10.4 (3) and −7.4 (3)°, respectively. In the crystal, mol­ecules are linked by O—H⋯O hydrogen bonds, forming chains along [100]. These chains are further linked by O—H⋯O hydrogen bonds, forming corrugated sheets lying parallel to (010). There are C—H⋯π inter­actions present within the sheets.

Related literature  

For the biological activity of chalcones and chalcone derivatives, see: Marais et al. (2005); Di Carlo et al. (1999); Troeberg et al. (2000); Ni et al. (2004). For a related structure, see: Jasinski et al. (2011). For the synthesis, see: Sidharthan et al. (2012); Chitra et al. (2013). For standard bond lengths, see: Allen et al. (1987).graphic file with name e-70-0o593-scheme1.jpg

Experimental  

Crystal data  

  • C16H14O4

  • M r = 270.27

  • Orthorhombic, Inline graphic

  • a = 16.2808 (8) Å

  • b = 10.4348 (5) Å

  • c = 16.2905 (7) Å

  • V = 2767.5 (2) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 293 K

  • 0.35 × 0.30 × 0.25 mm

Data collection  

  • Bruker Kappa APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2004) T min = 0.968, T max = 0.977

  • 12921 measured reflections

  • 3441 independent reflections

  • 1935 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.039

  • wR(F 2) = 0.128

  • S = 1.05

  • 3344 reflections

  • 189 parameters

  • 2 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: APEX2 and SAINT (Bruker, 2004); data reduction: SAINT and XPREP (Bruker, 2004); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814008757/su2713sup1.cif

e-70-0o593-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008757/su2713Isup2.hkl

e-70-0o593-Isup2.hkl (160.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008757/su2713Isup3.cml

CCDC reference: 991699

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C1–C6 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
O4—H4O⋯O3 0.86 (2) 2.20 (3) 2.655 (2) 113 (2)
O2—H2O⋯O1i 0.87 (2) 1.87 (2) 2.7349 (18) 173 (2)
O4—H4O⋯O1ii 0.86 (2) 2.22 (2) 2.937 (2) 141 (3)
C16—H16ACg ii 0.96 2.86 3.747 (3) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors thank Professor D. Velmurugan, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, for providing data-collection and computer facilities.

supplementary crystallographic information

1. Comment

Chalcones are known as the precursors of all flavonoid type natural products in biosynthesis (Marais et al., 2005). They are a major class of natural products with widespread distribution in fruits, vegetables, spices, tea and soy based food stuff and have been the subjects of interest for their significant pharmacological activities (Di Carlo et al., 1999). Many chalcones have been described for their high anti-malarial activity, probably as a result of addition of nucleophilic species to the double bond of the enone (Troeberg et al., 2000). A review of anti-infective and anti-inflammatory chalcones and recent advances in therapeutic chalcones have been reported (Ni et al., 2004). To understand the three dimensional features of this class of compounds, we report herein on the crystal structure of the title compound.

The molecular structure of the title molecule is illustrated in Fig. 1. The bond lengths (Allen et al., 1987) and bond angles are within normal values. The bond angles C6—C7—C8 = 119.12 (14) ° and C8═C9—C10 = 127.20 (17) ° are comparable with those in a similar reported structure (E)-3-(3,4-Dimethoxyphenyl)-1-(2-hydroxyphenyl)prop-2-en-1-one (2E)-3-(3,4-Dimethoxyphenyl)-1-(4-hydroxyphenyl)prop-2-en-1-one (Jasinski et al., 2011). This may be due to the presence of the keto group and associated steric forces. The prop-2-en-1-one group is twisted slightly with torsion angles O1═C7—C8—C9 and C5—C6—C7═O1 being -10.4 (3) and -7.4 (3) °, respectively. These values are comparable with the value of -6.9 (2) and -15.9 (2) ° reported for the above mentioned structure.

In the crystal, molecules are linked by O—H···O hydrogen bonds forming chains propagating along the a axis (Table 1 and Fig. 2). These chains are linked by further O—H···O hydrogen bonds forming corrugated sheets lying parallel to (010). Within the sheets there are C—H···π interactions present (Table 1). In total each molecule is linked to four neighbours by O—H···O hydrogen bonds (Table 1 and Fig. 2). Atom O4 acts as a bifurcated donor forming intra- and inter-molecular O—H···O hydrogen bonds (Table 1 and Fig. 2).

2. Experimental

The title compound was synthesized by a published procedure using the acid catalyzed Claisen-Schmidt reaction (Sidharthan et al., 2012; Chitra et al., 2013) Dry HCl gas was passed through a well cooled and stirred solution of 4-hydroxyacetophenone (0.02 mol) and vanillin (0.02 mol) in 125 ml of dry ethanol, placed in a 250 ml round-bottomed flask, for about 1 h. A wine-red coloured solution was formed to which ice cold water was added. Yellow block-like crystals of the title compound separated and were washed with double distilled water and re-crystallized from hot ethanol (Yield 85%; M.p. 454 K).

3. Refinement

The OH H atoms were located from difference Fourier maps and refined with Uiso(H)= 1.5Ueq(O). The C-bound H atoms were positioned geometrically and treated as riding atoms: C—H distance of 0.93 - 0.96 Å with Uiso(H)= 1.5Ueq(C-methyl) and = 1.2Ueq(C) for other H atom.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule, with atom labelling. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

A view along the x axis of the crystal packing of the title compound. Hydrogen bonds are shown as dashed lines (see Table 1 for details).

Crystal data

C16H14O4 F(000) = 1136
Mr = 270.27 Dx = 1.297 Mg m3
Orthorhombic, Pbca Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2ab Cell parameters from 3441 reflections
a = 16.2808 (8) Å θ = 2.5–28.3°
b = 10.4348 (5) Å µ = 0.09 mm1
c = 16.2905 (7) Å T = 293 K
V = 2767.5 (2) Å3 Block, yellow
Z = 8 0.35 × 0.30 × 0.25 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 3441 independent reflections
Radiation source: fine-focus sealed tube 1935 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
ω and φ scan θmax = 28.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −21→17
Tmin = 0.968, Tmax = 0.977 k = −13→7
12921 measured reflections l = −21→21

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0473P)2 + 0.8783P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max = 0.004
3344 reflections Δρmax = 0.18 e Å3
189 parameters Δρmin = −0.20 e Å3
2 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0024 (6)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.21682 (7) 0.58070 (13) 0.26522 (8) 0.0532 (4)
O2 0.59318 (7) 0.69018 (13) 0.32421 (9) 0.0594 (4)
H2O 0.6310 (12) 0.649 (2) 0.2968 (14) 0.089*
O3 0.28796 (9) 0.08570 (16) −0.06956 (10) 0.0762 (5)
O4 0.13699 (9) −0.00902 (16) −0.07979 (10) 0.0708 (5)
H4O 0.1798 (13) −0.024 (3) −0.1090 (16) 0.106*
C1 0.43059 (10) 0.50808 (17) 0.22500 (11) 0.0431 (4)
H1 0.4245 0.4397 0.1889 0.052*
C2 0.50835 (10) 0.54733 (17) 0.24660 (11) 0.0445 (4)
H2 0.5541 0.5065 0.2246 0.053*
C3 0.51802 (10) 0.64693 (17) 0.30075 (11) 0.0423 (4)
C4 0.44972 (11) 0.70803 (18) 0.33262 (12) 0.0511 (5)
H4 0.4562 0.7759 0.3690 0.061*
C5 0.37224 (10) 0.66855 (17) 0.31058 (11) 0.0461 (4)
H5 0.3267 0.7097 0.3327 0.055*
C6 0.36105 (9) 0.56830 (15) 0.25593 (10) 0.0366 (4)
C7 0.27741 (10) 0.53112 (17) 0.23093 (10) 0.0400 (4)
C8 0.26703 (10) 0.43695 (18) 0.16605 (11) 0.0453 (4)
H8 0.3133 0.4132 0.1362 0.054*
C9 0.19621 (11) 0.38287 (17) 0.14669 (11) 0.0459 (4)
H9 0.1504 0.4111 0.1755 0.055*
C10 0.18214 (10) 0.28457 (17) 0.08558 (11) 0.0444 (4)
C11 0.10435 (11) 0.2317 (2) 0.07729 (12) 0.0523 (5)
H11 0.0613 0.2625 0.1092 0.063*
C12 0.09021 (12) 0.1337 (2) 0.02206 (12) 0.0570 (5)
H12 0.0378 0.0990 0.0174 0.068*
C13 0.15256 (12) 0.08717 (19) −0.02586 (11) 0.0505 (5)
C14 0.23128 (11) 0.13987 (18) −0.01877 (12) 0.0496 (5)
C15 0.24529 (11) 0.23674 (18) 0.03604 (11) 0.0494 (5)
H15 0.2977 0.2714 0.0405 0.059*
C16 0.37141 (14) 0.1250 (3) −0.0603 (2) 0.1069 (11)
H16A 0.4061 0.0719 −0.0937 0.160*
H16B 0.3873 0.1169 −0.0038 0.160*
H16C 0.3770 0.2128 −0.0772 0.160*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0284 (7) 0.0681 (9) 0.0632 (8) 0.0049 (6) 0.0022 (5) −0.0101 (7)
O2 0.0294 (7) 0.0634 (9) 0.0855 (10) −0.0054 (6) −0.0028 (6) −0.0207 (8)
O3 0.0523 (9) 0.0907 (12) 0.0856 (11) −0.0047 (8) −0.0006 (8) −0.0401 (9)
O4 0.0661 (10) 0.0756 (10) 0.0707 (10) −0.0206 (8) −0.0097 (7) −0.0194 (8)
C1 0.0338 (9) 0.0456 (10) 0.0500 (10) 0.0044 (7) −0.0024 (7) −0.0103 (8)
C2 0.0275 (9) 0.0510 (10) 0.0550 (10) 0.0064 (7) 0.0007 (7) −0.0087 (9)
C3 0.0290 (9) 0.0447 (10) 0.0530 (10) −0.0026 (7) −0.0014 (7) −0.0011 (8)
C4 0.0373 (10) 0.0531 (11) 0.0629 (12) −0.0020 (8) 0.0042 (8) −0.0216 (9)
C5 0.0310 (9) 0.0517 (10) 0.0555 (11) 0.0030 (8) 0.0083 (7) −0.0108 (9)
C6 0.0287 (8) 0.0403 (9) 0.0407 (9) 0.0004 (7) 0.0005 (6) 0.0004 (8)
C7 0.0303 (9) 0.0444 (9) 0.0452 (9) 0.0018 (7) 0.0005 (7) 0.0033 (8)
C8 0.0307 (9) 0.0561 (11) 0.0491 (10) 0.0000 (8) −0.0005 (7) −0.0049 (9)
C9 0.0342 (10) 0.0514 (10) 0.0520 (10) −0.0002 (8) −0.0001 (8) 0.0006 (9)
C10 0.0347 (9) 0.0494 (10) 0.0490 (10) −0.0053 (8) −0.0055 (8) 0.0043 (8)
C11 0.0390 (10) 0.0655 (12) 0.0524 (11) −0.0099 (9) −0.0016 (8) 0.0033 (10)
C12 0.0441 (11) 0.0695 (13) 0.0575 (12) −0.0221 (10) −0.0100 (9) 0.0057 (10)
C13 0.0516 (12) 0.0526 (11) 0.0475 (10) −0.0106 (9) −0.0139 (9) 0.0030 (9)
C14 0.0426 (11) 0.0545 (11) 0.0518 (10) −0.0028 (9) −0.0076 (8) −0.0008 (9)
C15 0.0361 (9) 0.0552 (11) 0.0568 (11) −0.0071 (8) −0.0065 (8) −0.0035 (9)
C16 0.0457 (14) 0.139 (3) 0.136 (3) −0.0060 (15) 0.0096 (14) −0.076 (2)

Geometric parameters (Å, º)

O1—C7 1.2461 (19) C7—C8 1.453 (2)
O2—C3 1.359 (2) C8—C9 1.322 (2)
O2—H2O 0.871 (16) C8—H8 0.9300
O3—C14 1.362 (2) C9—C10 1.448 (2)
O3—C16 1.427 (3) C9—H9 0.9300
O4—C13 1.358 (2) C10—C11 1.388 (2)
O4—H4O 0.857 (17) C10—C15 1.399 (2)
C1—C2 1.376 (2) C11—C12 1.381 (3)
C1—C6 1.389 (2) C11—H11 0.9300
C1—H1 0.9300 C12—C13 1.370 (3)
C2—C3 1.372 (2) C12—H12 0.9300
C2—H2 0.9300 C13—C14 1.399 (2)
C3—C4 1.383 (2) C14—C15 1.368 (3)
C4—C5 1.375 (2) C15—H15 0.9300
C4—H4 0.9300 C16—H16A 0.9600
C5—C6 1.386 (2) C16—H16B 0.9600
C5—H5 0.9300 C16—H16C 0.9600
C6—C7 1.473 (2)
C3—O2—H2O 109.3 (16) C8—C9—C10 127.20 (17)
C14—O3—C16 117.46 (16) C8—C9—H9 116.4
C13—O4—H4O 110 (2) C10—C9—H9 116.4
C2—C1—C6 121.48 (16) C11—C10—C15 118.20 (17)
C2—C1—H1 119.3 C11—C10—C9 119.54 (17)
C6—C1—H1 119.3 C15—C10—C9 122.21 (15)
C3—C2—C1 119.68 (16) C12—C11—C10 120.65 (18)
C3—C2—H2 120.2 C12—C11—H11 119.7
C1—C2—H2 120.2 C10—C11—H11 119.7
O2—C3—C2 122.38 (15) C13—C12—C11 120.68 (17)
O2—C3—C4 117.73 (16) C13—C12—H12 119.7
C2—C3—C4 119.88 (15) C11—C12—H12 119.7
C5—C4—C3 120.11 (17) O4—C13—C12 119.51 (17)
C5—C4—H4 119.9 O4—C13—C14 120.99 (19)
C3—C4—H4 119.9 C12—C13—C14 119.50 (18)
C4—C5—C6 120.98 (16) O3—C14—C15 126.17 (17)
C4—C5—H5 119.5 O3—C14—C13 114.04 (17)
C6—C5—H5 119.5 C15—C14—C13 119.79 (18)
C5—C6—C1 117.86 (15) C14—C15—C10 121.17 (17)
C5—C6—C7 119.86 (15) C14—C15—H15 119.4
C1—C6—C7 122.26 (15) C10—C15—H15 119.4
O1—C7—C8 120.98 (15) O3—C16—H16A 109.5
O1—C7—C6 119.90 (15) O3—C16—H16B 109.5
C8—C7—C6 119.12 (14) H16A—C16—H16B 109.5
C9—C8—C7 124.31 (16) O3—C16—H16C 109.5
C9—C8—H8 117.8 H16A—C16—H16C 109.5
C7—C8—H8 117.8 H16B—C16—H16C 109.5
C6—C1—C2—C3 0.9 (3) C8—C9—C10—C11 175.35 (19)
C1—C2—C3—O2 −179.82 (17) C8—C9—C10—C15 −2.2 (3)
C1—C2—C3—C4 −0.7 (3) C15—C10—C11—C12 0.6 (3)
O2—C3—C4—C5 179.66 (17) C9—C10—C11—C12 −177.03 (17)
C2—C3—C4—C5 0.5 (3) C10—C11—C12—C13 −0.3 (3)
C3—C4—C5—C6 −0.5 (3) C11—C12—C13—O4 −179.87 (18)
C4—C5—C6—C1 0.8 (3) C11—C12—C13—C14 −0.2 (3)
C4—C5—C6—C7 −177.68 (17) C16—O3—C14—C15 5.9 (3)
C2—C1—C6—C5 −1.0 (3) C16—O3—C14—C13 −173.8 (2)
C2—C1—C6—C7 177.44 (16) O4—C13—C14—O3 −0.3 (3)
C5—C6—C7—O1 −7.4 (3) C12—C13—C14—O3 −179.98 (18)
C1—C6—C7—O1 174.18 (16) O4—C13—C14—C15 179.99 (17)
C5—C6—C7—C8 172.36 (16) C12—C13—C14—C15 0.3 (3)
C1—C6—C7—C8 −6.0 (2) O3—C14—C15—C10 −179.67 (18)
O1—C7—C8—C9 −10.4 (3) C13—C14—C15—C10 0.0 (3)
C6—C7—C8—C9 169.82 (17) C11—C10—C15—C14 −0.5 (3)
C7—C8—C9—C10 −176.97 (17) C9—C10—C15—C14 177.08 (17)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C1–C6 benzene ring.

D—H···A D—H H···A D···A D—H···A
O4—H4O···O3 0.86 (2) 2.20 (3) 2.655 (2) 113 (2)
O2—H2O···O1i 0.87 (2) 1.87 (2) 2.7349 (18) 173 (2)
O4—H4O···O1ii 0.86 (2) 2.22 (2) 2.937 (2) 141 (3)
C16—H16A···Cgii 0.96 2.86 3.747 (3) 155

Symmetry codes: (i) x+1/2, y, −z+1/2; (ii) x, −y+1/2, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SU2713).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Altomare, A., Cascarano, G., Giacovazzo, C. & Guagliardi, A. (1993). J. Appl. Cryst. 26, 343–350.
  3. Bruker (2004). APEX2, SAINT, XPREP and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chitra, M., Jonathan, D. R., Rajan, Y. C. & Duraipandiyan, V. (2013). Int. J. Chem. Appl. 5, 73–81.
  5. Di Carlo, G., Mascolo, N., Izzo, A. A. & Capasso, F. (1999). Life Sci. 65, 337–353. [DOI] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Jasinski, J. P., Butcher, R. J., Musthafa Khaleel, V., Sarojini, B. K. & Narayana, B. (2011). Acta Cryst E67, o813. [DOI] [PMC free article] [PubMed]
  8. Marais, J. P. J., Ferreira, D. & Slade, D. (2005). Phytochemistry, 66, 2145–2176. [DOI] [PubMed]
  9. Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Exp. Opin. Ther. Pat. 14, 1669–1691.
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Sidharthan, J., Jonathan, D. R. & Amaladhas, T. P. (2012). Int. J. Chem. Appl. 4, 241–250.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Troeberg, L., Chen, X., Flaherty, T. M., Morty, R. E., Cheng, M., Springer, H. C., McKerrow, J. H., Kenyon, G. L., Lonsdale-Eccles, J. D., Coetzer, T. H. T. & Cohen, F. E. (2000). Mol. Med. 6, 660–669. [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814008757/su2713sup1.cif

e-70-0o593-sup1.cif (17.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008757/su2713Isup2.hkl

e-70-0o593-Isup2.hkl (160.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008757/su2713Isup3.cml

CCDC reference: 991699

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES