Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 9;70(Pt 5):o528. doi: 10.1107/S1600536814007442

1-Methyl-3-phenyl­thio­urea

Hou-xiang Su a,*
PMCID: PMC4011236  PMID: 24860341

Abstract

The title compound, C8H10N2S, was prepared by reaction of methyl­amine solution, KOH and phenyl-iso­thio­cyanate in ethanol. It adopts a syn-Me and anti-Ph conformation relative to the C=S double bond. The dihedral angle between the N—C(=S)—N thio­urea and phenyl planes is 67.83 (6)°. In the crystal, the mol­ecules centrosymmetrical dimers by pairs of N(Ph)—H⋯S hydrogen bonds. The dimers are linked by N(Me)—H⋯S hydrogen bonds into layers parallel to (100).

Related literature  

For applications of thio­urea derivatives, see: Madan & Taneja (1991); Xu et al. (2004); Borisova et al. (2007). For the crystal structures of related compounds, see: Ji et al. (2002); Wenzel et al. (2011).graphic file with name e-70-0o528-scheme1.jpg

Experimental  

Crystal data  

  • C8H10N2S

  • M r = 166.24

  • Monoclinic, Inline graphic

  • a = 17.348 (3) Å

  • b = 8.6023 (13) Å

  • c = 12.1672 (18) Å

  • β = 99.637 (3)°

  • V = 1790.1 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.30 mm−1

  • T = 296 K

  • 0.25 × 0.23 × 0.20 mm

Data collection  

  • Bruker SMART CCD area-detector diffractometer

  • 5444 measured reflections

  • 2026 independent reflections

  • 1424 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.114

  • S = 1.03

  • 2026 reflections

  • 109 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.24 e Å−3

Data collection: SMART (Bruker 1997); cell refinement: SAINT (Bruker 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS2013 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007442/kq2012sup1.cif

e-70-0o528-sup1.cif (200.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007442/kq2012Isup2.hkl

e-70-0o528-Isup2.hkl (111.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007442/kq2012Isup3.cml

CCDC reference: 995308

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1⋯S1i 0.81 (2) 2.55 (2) 3.351 (2) 169 (2)
N2—H2⋯S1ii 0.77 (2) 2.78 (2) 3.4229 (19) 142 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The diffraction data collection was carried by Hai-lian Xiao in the New Materials & Function Coordination Chemistry Laboratory, Qingdao University of Science & Technology.

supplementary crystallographic information

1. Comment

Thioureas have been studied for many years because of their broad antibiosis and sterilibzation properties. Recent years study shows that thioureas not only can be used to kill insects and adjust plant growth but also have anti-viral activities (Madan & Taneja, 1991; Borisova et al., 2007). From our early quantum study on these compounds we find that they have several active centers and cart form polyligand complexes with metals easily (Xu et al., 2004). These complexes are widely used as anti-medicines. Therefore study on thioureas has important impact on the future. In order to search for new compounds with higher bioactivity, the title compound was synthesized.

In the title compound, C8H10N2S (I), the bond lengths and angles are in a good agreement with those found in the related compounds (Ji et al., 2002; Wenzel et al. 2011). Compound I adopts a cis-Me and trans-Ph conformation relative to the C═S double bond (Figure 1). The dihedral angle between the N1—C7(═S1)—N1 thiourea and phenyl planes is 67.83 (6)°.

In the crystal, the molecules of I form centrosymmetrical dimers by the two intermolecular N1—H1···S1i hydrogen bonds (Table 1, Figure 2). The dimers are further bound to each other by the intermolecular N2—H2···S1ii hydrogen bonds (Table 1) into layers parallel to (100) (Figure 2). Symmetry codes: (i) –x + 1/2, –y + 5/2, –z + 1; (ii) –x + 1/2, y–1/2, –z + 1/2.

2. Experimental

The title compound was prepared by reaction of methylamine solution (40%, 0.05 mol, 5.5 ml), KOH (0.15 mol, 8.4 g) and phenyl-isothiocyanate(0.05 mol, 4.65 g) in the ethanol solution (40 ml) at room temperature. Single-crystals of the title compound suitable for X-ray measurements was obtained by recrystallization from ethanol/acetone (v/v=1:1) at room temperature.

3. Refinement

The hydrogen atoms of the amino groups were localized in the difference Fourier map and refined isotropically. The other hydrogen atoms were placed in the calculated positions with C—H = 0.93 Å (aryl–H) and 0.96 Å (methyl–H) and refined in the riding model with fixed isotropic displacement parameters: Uiso(H) = 1.5Ueq(C) for the CH3 group and 1.2Ueq(C) for the other CH groups.

Figures

Fig. 1.

Fig. 1.

Molecular structure of I. Displacement ellipsoids are presented at the 40% probability level. H atoms are depicted as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A portion of the crystal structure of I demonstrating the H–bonded dimers and layers parallel to (100). The hydrogen atoms participating in the formation of hydrogen bonds are shown only. The intermolecular N—H···S hydrogen bonds are depicted by dashed lines.

Crystal data

C8H10N2S F(000) = 704
Mr = 166.24 Dx = 1.234 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 17.348 (3) Å Cell parameters from 1286 reflections
b = 8.6023 (13) Å θ = 2.4–24.8°
c = 12.1672 (18) Å µ = 0.30 mm1
β = 99.637 (3)° T = 296 K
V = 1790.1 (5) Å3 Bar, colorless
Z = 8 0.25 × 0.23 × 0.20 mm

Data collection

Bruker SMART CCD area-detector diffractometer Rint = 0.033
Radiation source: sealed tube θmax = 27.5°, θmin = 2.4°
phi and ω scans h = −22→21
5444 measured reflections k = −8→11
2026 independent reflections l = −15→15
1424 reflections with I > 2σ(I)

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: difference Fourier map
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0587P)2 + 0.1272P] where P = (Fo2 + 2Fc2)/3
2026 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.24 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.16423 (3) 1.19173 (6) 0.35515 (4) 0.04468 (19)
N1 0.29456 (9) 1.0463 (2) 0.43958 (15) 0.0467 (5)
N2 0.23002 (10) 0.9493 (2) 0.27416 (15) 0.0485 (5)
C1 0.35645 (10) 0.9351 (2) 0.45446 (17) 0.0401 (5)
C2 0.36233 (13) 0.8311 (3) 0.5403 (2) 0.0648 (7)
H2A 0.3251 0.8303 0.5871 0.078*
C3 0.42442 (15) 0.7264 (3) 0.5572 (3) 0.0814 (9)
H3 0.4287 0.6555 0.6156 0.098*
C4 0.47899 (13) 0.7275 (3) 0.4884 (3) 0.0683 (7)
H4 0.5202 0.6569 0.4997 0.082*
C5 0.47334 (12) 0.8309 (3) 0.4037 (2) 0.0646 (7)
H5 0.5109 0.8317 0.3573 0.077*
C6 0.41193 (11) 0.9357 (3) 0.38576 (18) 0.0510 (5)
H6 0.4082 1.0064 0.3273 0.061*
C7 0.23382 (9) 1.0531 (2) 0.35543 (15) 0.0353 (4)
C8 0.16755 (12) 0.9440 (3) 0.1781 (2) 0.0685 (7)
H8A 0.1740 1.0278 0.1284 0.103*
H8B 0.1180 0.9540 0.2026 0.103*
H8C 0.1695 0.8467 0.1401 0.103*
H1 0.2993 (12) 1.117 (3) 0.4843 (19) 0.054 (7)*
H2 0.2646 (12) 0.893 (3) 0.2769 (18) 0.052 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0346 (3) 0.0467 (3) 0.0524 (3) 0.0114 (2) 0.0062 (2) 0.0000 (2)
N1 0.0401 (9) 0.0497 (11) 0.0462 (11) 0.0157 (8) −0.0043 (8) −0.0147 (9)
N2 0.0365 (9) 0.0573 (12) 0.0482 (11) 0.0134 (8) −0.0034 (8) −0.0132 (9)
C1 0.0293 (8) 0.0418 (11) 0.0457 (11) 0.0061 (8) −0.0044 (8) −0.0085 (9)
C2 0.0512 (13) 0.0680 (17) 0.0758 (17) 0.0096 (11) 0.0123 (12) 0.0206 (13)
C3 0.0690 (17) 0.0612 (18) 0.109 (2) 0.0133 (14) 0.0015 (16) 0.0307 (16)
C4 0.0427 (12) 0.0587 (16) 0.097 (2) 0.0177 (11) −0.0081 (13) −0.0096 (15)
C5 0.0364 (10) 0.090 (2) 0.0637 (16) 0.0163 (11) −0.0007 (10) −0.0205 (14)
C6 0.0397 (10) 0.0647 (15) 0.0465 (12) 0.0101 (10) 0.0009 (9) −0.0033 (11)
C7 0.0298 (9) 0.0394 (11) 0.0373 (10) 0.0024 (7) 0.0075 (8) 0.0004 (9)
C8 0.0504 (12) 0.093 (2) 0.0555 (14) 0.0138 (12) −0.0108 (11) −0.0244 (14)

Geometric parameters (Å, º)

S1—C7 1.6964 (17) C3—C4 1.365 (4)
N1—C7 1.342 (2) C3—H3 0.9300
N1—C1 1.427 (2) C4—C5 1.353 (4)
N1—H1 0.81 (2) C4—H4 0.9300
N2—C7 1.326 (2) C5—C6 1.384 (3)
N2—C8 1.455 (3) C5—H5 0.9300
N2—H2 0.77 (2) C6—H6 0.9300
C1—C2 1.366 (3) C8—H8A 0.9600
C1—C6 1.376 (3) C8—H8B 0.9600
C2—C3 1.393 (3) C8—H8C 0.9600
C2—H2A 0.9300
C7—N1—C1 127.17 (17) C3—C4—H4 119.9
C7—N1—H1 117.4 (16) C4—C5—C6 120.2 (2)
C1—N1—H1 115.2 (16) C4—C5—H5 119.9
C7—N2—C8 123.87 (18) C6—C5—H5 119.9
C7—N2—H2 117.0 (17) C1—C6—C5 120.0 (2)
C8—N2—H2 119.0 (17) C1—C6—H6 120.0
C2—C1—C6 119.74 (18) C5—C6—H6 120.0
C2—C1—N1 119.64 (18) N2—C7—N1 118.32 (17)
C6—C1—N1 120.57 (18) N2—C7—S1 121.70 (15)
C1—C2—C3 119.6 (2) N1—C7—S1 119.98 (14)
C1—C2—H2A 120.2 N2—C8—H8A 109.5
C3—C2—H2A 120.2 N2—C8—H8B 109.5
C4—C3—C2 120.2 (3) H8A—C8—H8B 109.5
C4—C3—H3 119.9 N2—C8—H8C 109.5
C2—C3—H3 119.9 H8A—C8—H8C 109.5
C5—C4—C3 120.2 (2) H8B—C8—H8C 109.5
C5—C4—H4 119.9
C7—N1—C1—C2 −112.2 (2) C2—C1—C6—C5 0.1 (3)
C7—N1—C1—C6 70.3 (3) N1—C1—C6—C5 177.57 (19)
C6—C1—C2—C3 −0.1 (3) C4—C5—C6—C1 0.2 (3)
N1—C1—C2—C3 −177.7 (2) C8—N2—C7—N1 −179.8 (2)
C1—C2—C3—C4 −0.1 (4) C8—N2—C7—S1 0.4 (3)
C2—C3—C4—C5 0.4 (4) C1—N1—C7—N2 −1.9 (3)
C3—C4—C5—C6 −0.4 (4) C1—N1—C7—S1 177.91 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1···S1i 0.81 (2) 2.55 (2) 3.351 (2) 169 (2)
N2—H2···S1ii 0.77 (2) 2.78 (2) 3.4229 (19) 142 (2)

Symmetry codes: (i) −x+1/2, −y+5/2, −z+1; (ii) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: KQ2012).

References

  1. Borisova, N. E., Reshetova, M. D. & Ustynyuk, Y. A. (2007). Chem. Rev. 107, 46–79. [DOI] [PubMed]
  2. Bruker (1997). SMART and SAINT Bruker AXS, Inc., Madison, Wisconsin, USA.
  3. Ji, B. M., Du, C. X., Zhu, Y. & Wang, Y. (2002). Chin. J. Struct. Chem. 21, 252–255.
  4. Madan, V. K. & Taneja, A. D. (1991). J. Indian Chem. Soc. 68, 162–163.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Wenzel, M., Light, M. E., Davis, A. P. & Gale, P. A. (2011). Chem. Commun. 47, 7641–7643. [DOI] [PubMed]
  7. Xu, L., Jian, F., Qin, Y., Yu, G. & Jiao, K. (2004). Chem. Res. Chin. Univ. 20, 305–307.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007442/kq2012sup1.cif

e-70-0o528-sup1.cif (200.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007442/kq2012Isup2.hkl

e-70-0o528-Isup2.hkl (111.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007442/kq2012Isup3.cml

CCDC reference: 995308

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES