Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 30;70(Pt 5):m192–m193. doi: 10.1107/S1600536814008861

Poly[bis­(μ-2-amino-4-nitro­benzoato)di-μ-aqua-dirubidium]

Graham Smith a,*
PMCID: PMC4011243  PMID: 24860320

Abstract

In the structure of the title salt, [Rb2(C7H5N2O4)2(H2O)2]n, the asymmetric unit comprises two independent and different seven-coordinate Rb+ cations, one forming an RbO7 polyhedron, the other a RbO6N polyhedron, each of which is considerably distorted. The RbO7 polyhedron comprises bridging O-atom donors from two water mol­ecules, three carboxyl­ate groups, and two nitro groups. The RbO6N polyhedron comprises the two bridging water mol­ecules, one monodentate amine N-atom donor, one carboxyl O-atom donor and three O-atom donors from nitro groups (one from the chelate bridge). The extension of the dinuclear unit gives a three-dimensional polymeric structure which is stabilized by both intra- and inter­molecular amine N—H⋯O and water O—H⋯O hydrogen bonds to carboxyl and water O-atom acceptors, as well as a number of inter-ring π–π inter­actions [minimum centroid–centroid separation = 3.364 (2) Å]. The title salt is isostructural with the analogous caesium salt.

Related literature  

For the structures of some rubidium salts of substituted benzoic acids, see: Wiesbrock & Schmidbaur (2003); Dinnebier et al. (2002); Hu et al. (2005); Miao et al. (2011). For the structures of caesium 4-nitro­anthranilate and caesium 3,5-di­nitro­salicylate, see: Smith & Wermuth (2011) and Meng (2011), respectively. For the structures of the sodium and potassium 4-nitro­anthranilates, see: Smith (2013).graphic file with name e-70-0m192-scheme1.jpg

Experimental  

Crystal data  

  • [Rb2(C7H5N2O4)2(H2O)2]

  • M r = 569.23

  • Monoclinic, Inline graphic

  • a = 15.2938 (9) Å

  • b = 6.8601 (3) Å

  • c = 17.8075 (10) Å

  • β = 99.996 (5)°

  • V = 1839.95 (17) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 5.39 mm−1

  • T = 200 K

  • 0.30 × 0.18 × 0.08 mm

Data collection  

  • Oxford Diffraction Gemini-S CCD diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) T min = 0.691, T max = 0.980

  • 6954 measured reflections

  • 3634 independent reflections

  • 2708 reflections with I > 2σ(I)

  • R int = 0.046

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.075

  • S = 1.03

  • 3634 reflections

  • 295 parameters

  • 8 restraints

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.51 e Å−3

Data collection: CrysAlis PRO (Agilent, 2013); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008) within WinGX (Farrugia, 2012); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: PLATON.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814008861/wm5020sup1.cif

e-70-0m192-sup1.cif (34.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008861/wm5020Isup2.hkl

e-70-0m192-Isup2.hkl (178.2KB, hkl)

CCDC reference: 998206

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Rb1—O1W 3.041 (3)
Rb1—O2W 3.006 (3)
Rb1—O42A 3.064 (3)
Rb1—O42A i 3.092 (3)
Rb1—O12A ii 3.074 (3)
Rb1—O11B iii 3.059 (3)
Rb1—O12A iv 2.998 (3)
Rb2—O1W 2.994 (3)
Rb2—O2W 2.897 (3)
Rb2—O41A 2.992 (3)
Rb2—N2B 3.177 (4)
Rb2—O42B v 2.984 (3)
Rb2—O12B vi 2.947 (3)
Rb2—O42B iv 3.069 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2A—H21A⋯O12A 0.91 (2) 1.97 (3) 2.686 (5) 134 (3)
N2A—H21A⋯O1W vii 0.91 (2) 2.58 (4) 3.149 (5) 122 (3)
N2A—H22A⋯O11B v 0.94 (3) 2.46 (3) 3.206 (5) 136 (3)
N2B—H21B⋯O11A viii 0.90 (3) 2.01 (3) 2.831 (5) 151 (3)
N2B—H22B⋯O12B 0.90 (3) 1.88 (3) 2.644 (6) 142 (4)
O1W—H11W⋯O11B vi 0.88 (3) 1.92 (4) 2.783 (4) 167 (4)
O1W—H12W⋯O12A viii 0.89 (3) 1.96 (4) 2.847 (4) 176 (2)
O2W—H21W⋯O11A ii 0.89 (4) 1.93 (4) 2.823 (4) 178 (7)
O2W—H22W⋯O12B iii 0.88 (4) 1.95 (5) 2.812 (5) 166 (5)

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic.

Acknowledgments

The author acknowledges financial support from the Science and Engineering Faculty and the University Library, Queensland University of Technology.

supplementary crystallographic information

1. Comment

The structures of alkali metal salts derived from aromatic carboxylic acids are of interest (Smith, 2013), particularly with the heavier metals Rb and Cs, because of the expanded metals' coordination spheres and their ability to form coordination polymers. With 4-nitroanthranilic acid (4-NAA), a three-dimensional coordination polymeric structure [Cs2(C7H5N2O4)2(H2O)2] was described (Smith & Wermuth, 2011) and from the reaction of rubidium carbonate with 4-NAA, orange-red crystals of the title compound [Rb2(C7H5N2O4)2(H2O)2], were obtained, the structure of which is reported herein.

The Rb salt has the same formula as the Cs salt and has similar crystal data [comparative 200 K unit cell data for the Cs complex: a = 15.3615 (3), b = 6.9573 (2), c = 18.3714 (4) Å, β = 97.903 (2)°, V = 1944.79 (8) Å3, Z = 4, space group P21/n]. The X-ray analysis reported here confirms that the Rb and Cs analogues are isotypic.

In the structure of the Rb salt, the dinuclear asymmetric unit contains two independent and different seven-coordinate Rb+ cations, with both having irregular coordination environments (Fig. 1). The RbO7 polyhedron about Rb1 comprises bridging oxygen donors from two water molecules, three carboxylate groups, and a nitro group, with one O atom doubly bridging [Rb—O range 2.998 (3)–3.092 (3) Å]. The RbO6N polyhedron about Rb2 comprises the two bridging water atoms, one monodentate amine N donor, one carboxyl O donor and three O donors from nitro groups (one doubly bridging) [Rb—O range 2.897 (3)–3.069 (3) Å] (Table 1). The Rb1···Rb2 separation in this dinuclear unit is 4.1208 (7) Å. Extension of this unit gives an overall three-dimensional polymeric structure (Fig. 2) which is stabilized by both intra- and intermolecular amine N—H···O and water O—H···O hydrogen bonds to both carboxyl and water O-atom acceptors (Table 2). Also, there are several inter-ring π···π interactions involving both ring 1 (C1A–C6A) and ring 2 (C1B–C6B) with a minimum ring centroid separation 1···1viii of 3.364 (2) Å and a maximum ring centroid separation: 2···2ix of 3.556 (2) Å [for symmetry code (viii), see Table 1; for symmetry code (ix) -x + 3/2, y + 1/2, -z + 1/2].

The minor difference between the two isotypic Rb and Cs salt structures is that in the description of the Cs salt, the coordination about Cs1 includes two longer Cs—O bonds to O41Biv [3.326 (2) Å] (see Fig. 1) and to O1W1i [3.414 (3) Å]. In the title Rb salt, the equivalent values [3.342 (3) and 3.495 (3) Å] preclude these as Rb—O bonds.

These structural features, including expanded metal coordination spheres and multiple bridging with polymeric extensions, are similar to those found in other Rb salts with substituted benzoic acids, e.g. rubidium 3,5-dinitrobenzoate (8-coordinate) (Miao et al., 2011), rubidium anthranilate (7-coordinate) (Wiesbrock & Schmidbaur, 2003), rubidium salicylate (8-coordinate) (Dinnebier et al., 2002) and rubidium 3,5-dinitosalicylate (10-coordinate) (Meng, 2011), this last Rb complex being isotypic with its Cs analogue (Hu et al., 2005).

2. Experimental

The title compound was synthesized by heating together for 5 minutes, 0.1 mmol of rubidium carbonate and 0.2 mmol of 4-nitroanthranilic acid in 10 ml of 1:8 (v/v) ethanol–water. Partial room temperature evaporation of the solution gave orange-red flat prisms of the title complex from which a suitable specimen was cleaved for the X-ray analysis.

3. Refinement

The probability of isotypism with the Cs 4-nitroanthranilate monohydrate structure being recognized from the comparative cell data (Smith & Wermuth, 2011), the structure of the title complex was successfully phased in by inserting the non-H atoms from the Cs structure in the refinement. The same atom numbering scheme has been used for both structures. The amine and water H atoms were located in a difference-Fourier map and their positional and isotropic displacement parameters were allowed to ride with distance restraints on the N—H and O—H bond lengths of 0.91 (3)Å and with Uiso(H) = 1.2Ueq(N) or 1.5Ueq(O). Other hydrogen atoms were included in the refinement in calculated positions with C—H = 0.95 Å and allowed to ride, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular configuration and atom-numbering scheme for the dinuclear repeat unit of the title complex, with non-H atoms drawn as 30% probability displacement ellipsoids. Intramolecular hydrogen bonds are shown as dashed lines. For symmetry codes, see Table 1.

Fig. 2.

Fig. 2.

The polymeric structure in the unit cell viewed down b. Non-associative H atoms are omitted and hydrogen bonds are shown as dashed lines.

Crystal data

[Rb2(C7H5N2O4)2(H2O)2] F(000) = 1120
Mr = 569.23 Dx = 2.055 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 1131 reflections
a = 15.2938 (9) Å θ = 3.4–26.4°
b = 6.8601 (3) Å µ = 5.39 mm1
c = 17.8075 (10) Å T = 200 K
β = 99.996 (5)° Plate, orange red
V = 1839.95 (17) Å3 0.30 × 0.18 × 0.08 mm
Z = 4

Data collection

Oxford Diffraction Gemini-S CCD diffractometer 3634 independent reflections
Radiation source: Enhance (Mo) X-ray source 2708 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.046
Detector resolution: 16.077 pixels mm-1 θmax = 26.0°, θmin = 3.3°
ω scans h = −15→18
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2013) k = −7→8
Tmin = 0.691, Tmax = 0.980 l = −15→21
6954 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.075 H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0163P)2] where P = (Fo2 + 2Fc2)/3
3634 reflections (Δ/σ)max = 0.001
295 parameters Δρmax = 0.61 e Å3
8 restraints Δρmin = −0.51 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rb1 0.84018 (3) −0.11232 (6) 0.71945 (2) 0.0291 (2)
Rb2 0.90021 (3) 0.21443 (7) 0.54097 (3) 0.0333 (2)
O1W 0.8411 (2) 0.3229 (4) 0.68713 (19) 0.0313 (11)
O2W 0.8861 (2) −0.2009 (5) 0.5656 (2) 0.0395 (12)
O11A 0.26528 (19) 0.4400 (4) 0.47291 (17) 0.0316 (11)
O11B 1.01609 (19) 0.4261 (4) 0.26964 (17) 0.0324 (11)
O12A 0.29906 (19) 0.4056 (4) 0.35752 (16) 0.0312 (11)
O12B 0.9810 (2) 0.4779 (5) 0.38434 (17) 0.0349 (11)
O41A 0.7146 (2) 0.0750 (5) 0.5397 (2) 0.0404 (11)
O41B 0.5388 (2) 0.4326 (5) 0.20204 (19) 0.0459 (13)
O42A 0.6701 (2) 0.1017 (5) 0.64817 (19) 0.0394 (12)
O42B 0.5826 (2) 0.4724 (5) 0.09497 (19) 0.0463 (14)
N2A 0.4616 (3) 0.2771 (6) 0.3444 (2) 0.0345 (14)
N2B 0.8117 (3) 0.4663 (6) 0.3981 (2) 0.0350 (14)
N4A 0.6588 (2) 0.1193 (5) 0.5785 (2) 0.0293 (14)
N4B 0.5972 (2) 0.4538 (5) 0.1643 (2) 0.0295 (12)
C1A 0.4092 (3) 0.3222 (6) 0.4651 (2) 0.0174 (12)
C1B 0.8639 (3) 0.4516 (6) 0.2769 (2) 0.0198 (12)
C2A 0.4746 (3) 0.2689 (6) 0.4225 (2) 0.0219 (12)
C2B 0.7949 (3) 0.4594 (6) 0.3196 (2) 0.0232 (14)
C3A 0.5580 (3) 0.2062 (6) 0.4619 (2) 0.0234 (14)
C3B 0.7072 (3) 0.4573 (6) 0.2809 (2) 0.0233 (14)
C4A 0.5716 (3) 0.1917 (6) 0.5395 (2) 0.0206 (14)
C4B 0.6909 (3) 0.4514 (6) 0.2033 (2) 0.0212 (14)
C5A 0.5086 (3) 0.2394 (6) 0.5834 (3) 0.0233 (14)
C5B 0.7571 (3) 0.4458 (6) 0.1594 (2) 0.0240 (14)
C6A 0.4284 (3) 0.3055 (6) 0.5442 (2) 0.0206 (12)
C6B 0.8427 (3) 0.4444 (6) 0.1980 (2) 0.0235 (14)
C11A 0.3177 (3) 0.3931 (6) 0.4292 (3) 0.0213 (14)
C11B 0.9617 (3) 0.4523 (6) 0.3130 (3) 0.0252 (16)
H3A 0.60430 0.17440 0.43460 0.0280*
H5A 0.51990 0.22740 0.63740 0.0280*
H3B 0.65930 0.45980 0.30860 0.0280*
H5B 0.74390 0.44300 0.10520 0.0290*
H6A 0.38380 0.34160 0.57260 0.0250*
H6B 0.88960 0.43830 0.16940 0.0280*
H11W 0.882 (2) 0.414 (5) 0.695 (3) 0.0470*
H12W 0.796 (2) 0.404 (5) 0.671 (3) 0.0470*
H21A 0.4027 (14) 0.282 (6) 0.325 (2) 0.0420*
H21B 0.771 (2) 0.503 (6) 0.426 (2) 0.0420*
H21W 0.839 (2) −0.278 (6) 0.553 (3) 0.0590*
H22A 0.500 (2) 0.195 (5) 0.323 (2) 0.0420*
H22B 0.8686 (15) 0.503 (6) 0.412 (3) 0.0420*
H22W 0.927 (3) −0.292 (6) 0.573 (3) 0.0590*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rb1 0.0343 (3) 0.0294 (3) 0.0220 (2) 0.0052 (2) 0.0004 (2) −0.0010 (2)
Rb2 0.0369 (3) 0.0340 (3) 0.0255 (3) −0.0029 (2) −0.0039 (2) −0.0018 (2)
O1W 0.0256 (18) 0.0285 (19) 0.036 (2) −0.0001 (15) −0.0055 (15) 0.0014 (16)
O2W 0.032 (2) 0.039 (2) 0.044 (2) 0.0029 (17) −0.0035 (17) 0.0010 (19)
O11A 0.0209 (17) 0.050 (2) 0.0235 (18) 0.0042 (16) 0.0029 (14) −0.0060 (16)
O11B 0.0211 (17) 0.042 (2) 0.033 (2) −0.0003 (16) 0.0017 (14) −0.0054 (17)
O12A 0.0328 (18) 0.045 (2) 0.0138 (17) 0.0093 (16) −0.0012 (13) 0.0057 (15)
O12B 0.0358 (19) 0.045 (2) 0.0197 (18) 0.0043 (17) −0.0065 (14) −0.0050 (16)
O41A 0.0231 (18) 0.043 (2) 0.054 (2) 0.0041 (17) 0.0035 (17) −0.0052 (19)
O41B 0.0234 (18) 0.074 (3) 0.042 (2) −0.0015 (19) 0.0106 (16) 0.003 (2)
O42A 0.038 (2) 0.041 (2) 0.033 (2) 0.0045 (18) −0.0113 (16) 0.0062 (17)
O42B 0.0323 (19) 0.075 (3) 0.029 (2) −0.0023 (19) −0.0023 (16) 0.0082 (19)
N2A 0.033 (2) 0.045 (3) 0.026 (2) 0.006 (2) 0.0067 (19) −0.005 (2)
N2B 0.033 (2) 0.051 (3) 0.022 (2) 0.006 (2) 0.0075 (19) 0.000 (2)
N4A 0.025 (2) 0.018 (2) 0.042 (3) −0.0049 (19) −0.0024 (19) 0.001 (2)
N4B 0.028 (2) 0.031 (2) 0.029 (2) −0.001 (2) 0.0032 (18) −0.0013 (19)
C1A 0.023 (2) 0.013 (2) 0.016 (2) −0.0031 (19) 0.0027 (18) 0.0016 (18)
C1B 0.023 (2) 0.015 (2) 0.021 (2) 0.003 (2) 0.0029 (19) −0.0017 (19)
C2A 0.026 (2) 0.021 (2) 0.018 (2) −0.003 (2) 0.0017 (19) −0.001 (2)
C2B 0.034 (3) 0.015 (2) 0.020 (2) 0.003 (2) 0.003 (2) 0.0008 (19)
C3A 0.021 (2) 0.019 (2) 0.031 (3) −0.003 (2) 0.007 (2) −0.005 (2)
C3B 0.023 (2) 0.021 (2) 0.028 (3) 0.000 (2) 0.010 (2) −0.001 (2)
C4A 0.017 (2) 0.014 (2) 0.028 (3) −0.002 (2) −0.0042 (19) −0.001 (2)
C4B 0.020 (2) 0.014 (2) 0.028 (3) −0.003 (2) 0.000 (2) 0.003 (2)
C5A 0.026 (2) 0.021 (3) 0.021 (2) 0.000 (2) −0.0015 (19) −0.001 (2)
C5B 0.028 (2) 0.025 (3) 0.018 (2) −0.003 (2) 0.0014 (19) −0.001 (2)
C6A 0.024 (2) 0.017 (2) 0.020 (2) −0.003 (2) 0.0020 (19) −0.0019 (19)
C6B 0.025 (2) 0.021 (2) 0.026 (3) −0.004 (2) 0.009 (2) −0.002 (2)
C11A 0.019 (2) 0.018 (2) 0.026 (3) −0.002 (2) 0.0015 (19) 0.001 (2)
C11B 0.029 (3) 0.018 (2) 0.028 (3) 0.003 (2) 0.003 (2) −0.001 (2)

Geometric parameters (Å, º)

Rb1—O1W 3.041 (3) N2B—C2B 1.378 (5)
Rb1—O2W 3.006 (3) N4A—C4A 1.479 (5)
Rb1—O42A 3.064 (3) N4B—C4B 1.480 (5)
Rb1—O42Ai 3.092 (3) N2A—H21A 0.91 (2)
Rb1—O12Aii 3.074 (3) N2A—H22A 0.94 (3)
Rb1—O11Biii 3.059 (3) N2B—H21B 0.90 (3)
Rb1—O12Aiv 2.998 (3) N2B—H22B 0.90 (3)
Rb2—O1W 2.994 (3) C1A—C2A 1.405 (6)
Rb2—O2W 2.897 (3) C1A—C6A 1.393 (5)
Rb2—O41A 2.992 (3) C1A—C11A 1.514 (6)
Rb2—N2B 3.177 (4) C1B—C2B 1.405 (6)
Rb2—O42Bv 2.984 (3) C1B—C6B 1.387 (5)
Rb2—O12Bvi 2.947 (3) C1B—C11B 1.522 (7)
Rb2—O42Biv 3.069 (3) C2A—C3A 1.412 (6)
O11A—C11A 1.253 (6) C2B—C3B 1.398 (6)
O11B—C11B 1.242 (6) C3A—C4A 1.365 (5)
O12A—C11A 1.262 (6) C3B—C4B 1.362 (5)
O12B—C11B 1.266 (6) C4A—C5A 1.381 (6)
O41A—N4A 1.226 (5) C4B—C5B 1.383 (6)
O41B—N4B 1.216 (5) C5A—C6A 1.378 (6)
O42A—N4A 1.229 (5) C5B—C6B 1.369 (6)
O42B—N4B 1.223 (5) C3A—H3A 0.9500
O1W—H11W 0.88 (3) C3B—H3B 0.9500
O1W—H12W 0.89 (3) C5A—H5A 0.9500
O2W—H21W 0.89 (4) C5B—H5B 0.9500
O2W—H22W 0.88 (4) C6A—H6A 0.9500
N2A—C2A 1.372 (5) C6B—H6B 0.9500
O1W—Rb1—O2W 90.95 (9) Rb1—O2W—H22W 106 (3)
O1W—Rb1—O42A 58.84 (9) H21W—O2W—H22W 98 (4)
O1W—Rb1—O42Ai 140.33 (9) Rb2—O2W—H22W 131 (3)
O1W—Rb1—O12Aii 125.72 (8) Rb2—O2W—H21W 129 (3)
O1W—Rb1—O11Biii 132.54 (8) Rb2—N2B—C2B 140.6 (3)
O1W—Rb1—O12Aiv 72.50 (8) O41A—N4A—C4A 118.6 (3)
O2W—Rb1—O42A 92.01 (9) O41A—N4A—O42A 123.7 (3)
O2W—Rb1—O42Ai 128.13 (9) O42A—N4A—C4A 117.7 (3)
O2W—Rb1—O12Aii 73.42 (8) O41B—N4B—O42B 123.2 (3)
O2W—Rb1—O11Biii 68.69 (9) O41B—N4B—C4B 118.9 (3)
O2W—Rb1—O12Aiv 163.43 (9) O42B—N4B—C4B 117.9 (3)
O42A—Rb1—O42Ai 117.91 (9) C2A—N2A—H22A 113 (2)
O12Aii—Rb1—O42A 69.90 (8) H21A—N2A—H22A 121 (3)
O11Biii—Rb1—O42A 155.88 (8) C2A—N2A—H21A 110 (2)
O12Aiv—Rb1—O42A 80.17 (8) Rb2—N2B—H22B 71 (3)
O12Aii—Rb1—O42Ai 78.56 (8) C2B—N2B—H21B 123 (2)
O11Biii—Rb1—O42Ai 68.66 (8) Rb2—N2B—H21B 87 (2)
O12Aiv—Rb1—O42Ai 68.24 (8) H21B—N2B—H22B 120 (4)
O11Biii—Rb1—O12Aii 90.13 (8) C2B—N2B—H22B 107 (3)
O12Aii—Rb1—O12Aiv 116.59 (8) C6A—C1A—C11A 118.1 (4)
O11Biii—Rb1—O12Aiv 122.11 (8) C2A—C1A—C11A 123.2 (3)
O1W—Rb2—O2W 94.08 (9) C2A—C1A—C6A 118.7 (4)
O1W—Rb2—O41A 69.92 (9) C2B—C1B—C6B 119.0 (4)
O1W—Rb2—N2B 114.21 (10) C2B—C1B—C11B 123.1 (3)
O1W—Rb2—O42Bv 157.81 (9) C6B—C1B—C11B 117.9 (4)
O1W—Rb2—O12Bvi 71.65 (8) N2A—C2A—C1A 123.1 (4)
O1W—Rb2—O42Biv 103.10 (9) C1A—C2A—C3A 118.5 (3)
O2W—Rb2—O41A 65.87 (9) N2A—C2A—C3A 118.4 (4)
O2W—Rb2—N2B 128.58 (10) N2B—C2B—C3B 119.7 (4)
O2W—Rb2—O42Bv 66.11 (10) N2B—C2B—C1B 121.7 (4)
O2W—Rb2—O12Bvi 133.82 (9) C1B—C2B—C3B 118.7 (3)
O2W—Rb2—O42Biv 68.24 (9) C2A—C3A—C4A 119.4 (4)
O41A—Rb2—N2B 84.03 (11) C2B—C3B—C4B 119.5 (4)
O41A—Rb2—O42Bv 91.89 (9) C3A—C4A—C4A 123.9 (4)
O12Bvi—Rb2—O41A 137.91 (9) N4A—C4A—C5A 118.3 (3)
O41A—Rb2—O42Biv 132.73 (9) N4A—C4A—C3A 117.8 (4)
O42Bv—Rb2—N2B 74.83 (10) C3B—C4B—C5B 123.5 (4)
O12Bvi—Rb2—N2B 96.63 (10) N4B—C4B—C5B 118.6 (3)
O42Biv—Rb2—N2B 135.71 (10) N4B—C4B—C3B 117.9 (4)
O12Bvi—Rb2—O42Bv 129.07 (9) C4A—C5A—C6A 116.0 (4)
O42Bv—Rb2—O42Biv 79.55 (9) C4B—C5B—C6B 116.5 (3)
O12Bvi—Rb2—O42Biv 72.67 (9) C1A—C6A—C5A 123.5 (4)
Rb1—O1W—Rb2 86.13 (8) C1B—C6B—C5B 122.9 (4)
Rb1—O2W—Rb2 88.54 (9) O12A—C11A—C1A 118.6 (4)
Rb1iii—O11B—C11B 127.9 (3) O11A—C11A—O12A 123.7 (4)
Rb1ii—O12A—C11A 115.1 (3) O11A—C11A—C1A 117.7 (4)
Rb1vii—O12A—C11A 145.0 (3) O11B—C11B—O12B 125.4 (4)
Rb1ii—O12A—Rb1vii 99.88 (8) O11B—C11B—C1B 116.9 (4)
Rb2vi—O12B—C11B 124.8 (3) O12B—C11B—C1B 117.7 (4)
Rb2—O41A—N4A 132.0 (3) C2A—C3A—H3A 120.00
Rb1—O42A—N4A 115.2 (2) C4A—C3A—H3A 120.00
Rb1—O42A—Rb1viii 98.05 (9) C2B—C3B—H3B 120.00
Rb1viii—O42A—N4A 133.7 (3) C4B—C3B—H3B 120.00
Rb2ix—O42B—N4B 148.3 (3) C4A—C5A—H5A 122.00
Rb2vii—O42B—N4B 105.6 (2) C6A—C5A—H5A 122.00
Rb2ix—O42B—Rb2vii 100.45 (10) C4B—C5B—H5B 122.00
Rb1—O1W—H12W 130 (2) C6B—C5B—H5B 122.00
Rb2—O1W—H11W 90 (3) C1A—C6A—H6A 118.00
Rb2—O1W—H12W 102 (3) C5A—C6A—H6A 118.00
H11W—O1W—H12W 96 (3) C1B—C6B—H6B 119.00
Rb1—O1W—H11W 134 (2) C5B—C6B—H6B 118.00
Rb1—O2W—H21W 93 (3)
O2W—Rb1—O1W—Rb2 −4.05 (8) O1W—Rb2—O12Bvi—C11Bvi 30.1 (3)
O42A—Rb1—O1W—Rb2 −95.84 (10) O2W—Rb2—O12Bvi—C11Bvi −47.5 (4)
O42Ai—Rb1—O1W—Rb2 166.82 (10) O41A—Rb2—O12Bvi—C11Bvi 55.0 (4)
O12Aii—Rb1—O1W—Rb2 −74.20 (10) N2B—Rb2—O12Bvi—C11Bvi 143.4 (3)
O11Biii—Rb1—O1W—Rb2 57.38 (13) O1W—Rb2—O42Biv—Rb2iii 157.48 (9)
O12Aiv—Rb1—O1W—Rb2 175.23 (10) O1W—Rb2—O42Biv—N4Biv −4.3 (3)
O1W—Rb1—O2W—Rb2 4.18 (9) O2W—Rb2—O42Biv—Rb2iii 68.29 (10)
O42A—Rb1—O2W—Rb2 63.04 (9) O2W—Rb2—O42Biv—N4Biv −93.5 (3)
O42Ai—Rb1—O2W—Rb2 −168.43 (8) O41A—Rb2—O42Biv—Rb2iii 82.84 (14)
O12Aii—Rb1—O2W—Rb2 131.36 (9) O41A—Rb2—O42Biv—N4Biv −79.0 (3)
O11Biii—Rb1—O2W—Rb2 −131.82 (10) N2B—Rb2—O42Biv—Rb2iii −55.24 (16)
O1W—Rb1—O42A—N4A 85.4 (3) N2B—Rb2—O42Biv—N4Biv 142.9 (2)
O1W—Rb1—O42A—Rb1viii −61.55 (10) Rb1iii—O11B—C11B—O12B 55.8 (6)
O2W—Rb1—O42A—N4A −4.5 (3) Rb1iii—O11B—C11B—C1B −123.6 (3)
O2W—Rb1—O42A—Rb1viii −151.44 (9) Rb1ii—O12A—C11A—O11A −69.9 (5)
O42Ai—Rb1—O42A—N4A −140.4 (3) Rb1ii—O12A—C11A—C1A 111.6 (3)
O42Ai—Rb1—O42A—Rb1viii 72.69 (11) Rb1vii—O12A—C11A—O11A 112.4 (5)
O12Aii—Rb1—O42A—N4A −76.1 (3) Rb1vii—O12A—C11A—C1A −66.1 (6)
O12Aii—Rb1—O42A—Rb1viii 137.04 (10) Rb2vi—O12B—C11B—O11B 56.1 (5)
O11Biii—Rb1—O42A—N4A −40.3 (4) Rb2vi—O12B—C11B—C1B −124.4 (3)
O11Biii—Rb1—O42A—Rb1viii 172.79 (15) Rb2—O41A—N4A—O42A −59.4 (5)
O12Aiv—Rb1—O42A—N4A 160.8 (3) Rb2—O41A—N4A—C4A 122.8 (3)
O12Aiv—Rb1—O42A—Rb1viii 13.87 (8) Rb1—O42A—N4A—O41A −7.6 (5)
O1W—Rb1—O42Ai—Rb1i 119.97 (12) Rb1—O42A—N4A—C4A 170.2 (3)
O1W—Rb1—O42Ai—N4Ai −16.9 (4) Rb1viii—O42A—N4A—O41A 124.0 (4)
O2W—Rb1—O42Ai—Rb1i −71.66 (12) Rb1viii—O42A—N4A—C4A −58.2 (5)
O2W—Rb1—O42Ai—N4Ai 151.4 (3) Rb2ix—O42B—N4B—O41B 120.8 (5)
O42A—Rb1—O42Ai—Rb1i 46.14 (12) Rb2ix—O42B—N4B—C4B −61.0 (6)
O42A—Rb1—O42Ai—N4Ai −90.8 (3) Rb2vii—O42B—N4B—O41B −23.4 (4)
O1W—Rb1—O12Aii—Rb1i −131.30 (9) Rb2vii—O42B—N4B—C4B 154.7 (3)
O1W—Rb1—O12Aii—C11Aii 47.4 (3) Rb2—N2B—C2B—C1B −62.6 (6)
O2W—Rb1—O12Aii—Rb1i 149.82 (10) Rb2—N2B—C2B—C3B 116.5 (5)
O2W—Rb1—O12Aii—C11Aii −31.5 (3) O41A—N4A—C4A—C3A −0.3 (6)
O42A—Rb1—O12Aii—Rb1i −111.67 (10) O41A—N4A—C4A—C5A 179.3 (4)
O42A—Rb1—O12Aii—C11Aii 67.0 (3) O42A—N4A—C4A—C3A −178.2 (4)
O1W—Rb1—O11Biii—C11Biii −44.3 (4) O42A—N4A—C4A—C5A 1.4 (6)
O2W—Rb1—O11Biii—C11Biii 26.2 (3) O41B—N4B—C4B—C3B −10.5 (6)
O42A—Rb1—O11Biii—C11Biii 65.0 (4) O41B—N4B—C4B—C5B 170.3 (4)
O1W—Rb1—O12Aiv—Rb1viii 46.25 (8) O42B—N4B—C4B—C3B 171.3 (4)
O1W—Rb1—O12Aiv—C11Aiv −131.6 (5) O42B—N4B—C4B—C5B −7.9 (6)
O42A—Rb1—O12Aiv—Rb1viii −14.02 (8) C6A—C1A—C2A—N2A 178.9 (4)
O42A—Rb1—O12Aiv—C11Aiv 168.1 (5) C6A—C1A—C2A—C3A −1.9 (6)
O2W—Rb2—O1W—Rb1 4.22 (9) C11A—C1A—C2A—N2A 0.3 (7)
O41A—Rb2—O1W—Rb1 66.67 (9) C11A—C1A—C2A—C3A 179.5 (4)
N2B—Rb2—O1W—Rb1 140.07 (10) C2A—C1A—C6A—C5A 0.1 (6)
O42Bv—Rb2—O1W—Rb1 30.1 (3) C11A—C1A—C6A—C5A 178.8 (4)
O12Bvi—Rb2—O1W—Rb1 −130.83 (10) C2A—C1A—C11A—O11A −178.7 (4)
O42Biv—Rb2—O1W—Rb1 −64.38 (9) C2A—C1A—C11A—O12A −0.2 (6)
O1W—Rb2—O2W—Rb1 −4.26 (9) C6A—C1A—C11A—O11A 2.7 (6)
O41A—Rb2—O2W—Rb1 −70.11 (9) C6A—C1A—C11A—O12A −178.8 (4)
N2B—Rb2—O2W—Rb1 −129.90 (12) C6B—C1B—C2B—N2B 179.8 (4)
O42Bv—Rb2—O2W—Rb1 −173.89 (11) C6B—C1B—C2B—C3B 0.7 (6)
O12Bvi—Rb2—O2W—Rb1 64.09 (13) C11B—C1B—C2B—N2B −0.7 (6)
O42Biv—Rb2—O2W—Rb1 98.23 (10) C11B—C1B—C2B—C3B −179.8 (4)
O1W—Rb2—O41A—N4A 17.2 (3) C2B—C1B—C6B—C5B 0.4 (6)
O2W—Rb2—O41A—N4A 121.5 (4) C11B—C1B—C6B—C5B −179.1 (4)
N2B—Rb2—O41A—N4A −101.3 (4) C2B—C1B—C11B—O11B 173.3 (4)
O42Bv—Rb2—O41A—N4A −175.8 (4) C2B—C1B—C11B—O12B −6.2 (6)
O12Bvi—Rb2—O41A—N4A −8.0 (4) C6B—C1B—C11B—O11B −7.2 (6)
O42Biv—Rb2—O41A—N4A 106.7 (4) C6B—C1B—C11B—O12B 173.3 (4)
O1W—Rb2—N2B—C2B −159.6 (5) N2A—C2A—C3A—C4A −178.2 (4)
O2W—Rb2—N2B—C2B −42.3 (5) C1A—C2A—C3A—C4A 2.6 (6)
O41A—Rb2—N2B—C2B −94.7 (5) N2B—C2B—C3B—C4B 179.7 (4)
O42Bv—Rb2—N2B—C2B −1.1 (5) C1B—C2B—C3B—C4B −1.2 (6)
O12Bvi—Rb2—N2B—C2B 127.6 (5) C2A—C3A—C4A—N4A 178.0 (4)
O42Biv—Rb2—N2B—C2B 55.7 (5) C2A—C3A—C4A—C5A −1.6 (7)
O1W—Rb2—O42Bv—N4Bv 115.8 (5) C2B—C3B—C4B—N4B −178.7 (4)
O1W—Rb2—O42Bv—Rb2iii −99.1 (2) C2B—C3B—C4B—C5B 0.5 (6)
O2W—Rb2—O42Bv—N4Bv 144.2 (5) N4A—C4A—C5A—C6A −179.8 (4)
O2W—Rb2—O42Bv—Rb2iii −70.70 (10) C3A—C4A—C5A—C6A −0.2 (6)
O41A—Rb2—O42Bv—N4Bv 81.7 (5) N4B—C4B—C5B—C6B 179.8 (4)
O41A—Rb2—O42Bv—Rb2iii −133.17 (10) C3B—C4B—C5B—C6B 0.7 (6)
N2B—Rb2—O42Bv—N4Bv −1.6 (5) C4A—C5A—C6A—C1A 1.0 (6)
N2B—Rb2—O42Bv—Rb2iii 143.53 (12) C4B—C5B—C6B—C1B −1.1 (6)

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+1, −y, −z+1; (iii) −x+2, −y, −z+1; (iv) x+1/2, −y+1/2, z+1/2; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+2, −y+1, −z+1; (vii) x−1/2, −y+1/2, z−1/2; (viii) −x+3/2, y+1/2, −z+3/2; (ix) −x+3/2, y+1/2, −z+1/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2A—H21A···O12A 0.91 (2) 1.97 (3) 2.686 (5) 134 (3)
N2A—H21A···O1Wvii 0.91 (2) 2.58 (4) 3.149 (5) 122 (3)
N2A—H22A···O11Bv 0.94 (3) 2.46 (3) 3.206 (5) 136 (3)
N2B—H21B···O11Ax 0.90 (3) 2.01 (3) 2.831 (5) 151 (3)
N2B—H22B···O12B 0.90 (3) 1.88 (3) 2.644 (6) 142 (4)
O1W—H11W···O11Bvi 0.88 (3) 1.92 (4) 2.783 (4) 167 (4)
O1W—H12W···O12Ax 0.89 (3) 1.96 (4) 2.847 (4) 176 (2)
O2W—H21W···O11Aii 0.89 (4) 1.93 (4) 2.823 (4) 178 (7)
O2W—H22W···O12Biii 0.88 (4) 1.95 (5) 2.812 (5) 166 (5)
C5A—H5A···O11Bxi 0.95 2.59 3.488 (6) 158
C6A—H6A···O11A 0.95 2.40 2.755 (5) 101
C6B—H6B···O11B 0.95 2.40 2.739 (5) 101

Symmetry codes: (ii) −x+1, −y, −z+1; (iii) −x+2, −y, −z+1; (v) −x+3/2, y−1/2, −z+1/2; (vi) −x+2, −y+1, −z+1; (vii) x−1/2, −y+1/2, z−1/2; (x) −x+1, −y+1, −z+1; (xi) x−1/2, −y+1/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5020).

References

  1. Agilent (2013). CrysAlis PRO Agilent Technologies Ltd, Yarnton, England.
  2. Dinnebier, R. E., Jelonek, S., Sieler, J. & Stephens, P. W. (2002). Z. Anorg. Allg. Chem. 628, 363–368.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Hu, M., Geng, C., Li, S., Du, Y., Jiang, Y. & Liu, Z. (2005). J. Organomet. Chem. 690, 3118–3124.
  5. Meng, Y. (2011). Acta Cryst. E67, m454. [DOI] [PMC free article] [PubMed]
  6. Miao, Y., Zhang, X. & Liu, C. (2011). Acta Cryst. E67, m1002. [DOI] [PMC free article] [PubMed]
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Smith, G. (2013). Acta Cryst. C69, 1472–1477. [DOI] [PubMed]
  9. Smith, G. & Wermuth, U. D. (2011). Acta Cryst. E67, m1047–m1048. [DOI] [PMC free article] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Wiesbrock, F. & Schmidbaur, H. (2003). Inorg. Chem. 42, 7283–7289. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814008861/wm5020sup1.cif

e-70-0m192-sup1.cif (34.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008861/wm5020Isup2.hkl

e-70-0m192-Isup2.hkl (178.2KB, hkl)

CCDC reference: 998206

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES