Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 12;70(Pt 5):o552. doi: 10.1107/S1600536814007673

Diethyl 2,2′-(ethane-1,2-diyldi­oxy)di­benzo­ate

Huaduan Shi a, Haisha Qin a, Zhen Ma a,*
PMCID: PMC4011244  PMID: 24860360

Abstract

The mol­ecular title compound, C20H22O6, was obtained by the reaction of ethyl 2-hy­droxy­benzoate with 1,2-di­chloro­ethane. The mol­ecule lies on a twofold rotation axis which passes through the middle of the central ethyl­ene bridge. This group exhibits a gauche conformation with the corresponding O—C—C—O torsion angle being 73.2 (2)°. The C atoms of the carboxyl group, the aryl and the O—CH2 group are coplanar, with an r.m.s. deviation of 0.01 Å. The two aryl rings form a dihedral angle of 67.94 (4)°. The ester ethyl group is disordered over two sets of sites with an occupancy ratio of 0.59 (2):0.41 (2). The crystal packing is dominated by van der Waals forces.

Related literature  

For synthesis and structures of diesters, see: Ma et al. (2012); Hou & Kan (2007). For properties and applications of diesters, see: Chen & Liu (2002). For the synthesis of the title compound, see: Ma & Liu (2002). For standard bond lengths, see: Allen et al. (1987). For background to the applications of organic acids and esters, see: Chanthapally et al. (2012); Yan et al. (2012).graphic file with name e-70-0o552-scheme1.jpg

Experimental  

Crystal data  

  • C20H22O6

  • M r = 358.38

  • Orthorhombic, Inline graphic

  • a = 21.805 (4) Å

  • b = 9.871 (2) Å

  • c = 8.8646 (18) Å

  • V = 1908.0 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.09 mm−1

  • T = 298 K

  • 0.35 × 0.31 × 0.28 mm

Data collection  

  • Bruker SMART CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.858, T max = 1.000

  • 11280 measured reflections

  • 2192 independent reflections

  • 1543 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.041

  • wR(F 2) = 0.132

  • S = 1.04

  • 2192 reflections

  • 140 parameters

  • 24 restraints

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, dierster-0. DOI: 10.1107/S1600536814007673/wm5015sup1.cif

e-70-0o552-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007673/wm5015Isup2.hkl

e-70-0o552-Isup2.hkl (107.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007673/wm5015Isup3.cml

CCDC reference: 995747

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the National Fundation of China (21261002).

supplementary crystallographic information

1. Comment

In recent years the chemistry of carboxylic compounds has been the subject of intense studies because of the potential applications of these compounds as ligands for metal complexes or of potential applications as luminescent, non-linear optical, electrical conductive and liquid-crystalline materials (Yan et al., 2012. Chanthapally et al., 2012). Esters are also very important since these compounds are commodity chemicals used as intermediates in the manufacture of acids and in the production of numerous important industrial products. Hence, the current work aims to synthesize new esters for acid production and for investigation of their coordination behaviors with metal ions (Ma et al., 2012; Chen & Liu, 2002). Here, we report the crystal structure of a new diester, C20H22O6, which was obtained by reaction of ethyl 2-hydroxybenzoate with 1,2-dichloroethane.

The structure of C20H22O6 consists of a neutral molecular unit (Fig. 1). The molecule lies on a twofold rotation axis which passes through the middle of the central ethylene bridge that has a gauche conformation with the corresponding O—C—C—O torsion angle being 73.2 (2) °. All bond lengths and angles are within normal ranges (Allen et al., 1987). The carbon atom of the carboxyl group, and the aryl and O—CH2 moeities of one half molecule are coplanar with an r.m.s. deviation of 0.01 Å. The two aryl rings form a dihedral angle of 67.94 (4) °. The ester ethyl group is disordered over two sets of sites in a 0.59 (2):0.41 (2) occupancy ratio. The packing of the molecules in the crystal structure is shown in Fig. 2.

2. Experimental

The title compound was obtained by the reaction of ethyl 2- hydroxybenzoate with 1,2-dichloroethane in N,N'- dimethylformamide (DMF) according to a reported procedure (Ma & Liu, 2002). In a 100 cm3 flask fitted with a funnel, ethyl 2- hydroxybenzoate (8.3 g, 50 mM) and potassium carbonate were mixed in 50 cm3 of DMF. To this solution was added dropwise a stoichiometric quantity of 1,2-dichloroethane (2.5 g, 25 mM) dissolved in 20 cm3 of DMF for a period of an hour under stirring. The mixture was further stirred for 24 h at 353 K. The solution was concentrated under reduced pressure and the white solid precipitated by adding a large quantity of water (200 cm3) was filtered off and recrystallized from ethanol and decolored with activated carbon. A colorless solid was finally obtained (yield 81 %, m.p: 417–419 K). Slow evaporation of a solution of the title compound in ethanol and dichloromethane (1:1) led to the formation of colorless crystals, which were suitable for X-ray characterization.

3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C—H = 0.93 - 0.97 Å and with Uiso(H) = 1.2 times Ueq(C) or 1.5 times Ueq (methyl C). The two carbon atoms of the ethyl group are disordered over two sets of sites with an occupancy ratio of 0.59 (2):0.41 (2). The C atoms of this group were additionally refined with the ISOR command in SHELXL.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as small spheres of arbitrary radius. [symmetry code: (A) 1-x, y, 1/2-z ]

Fig. 2.

Fig. 2.

A view of the crystal packing along the c axis.

Crystal data

C20H22O6 F(000) = 760
Mr = 358.38 Dx = 1.248 Mg m3
Orthorhombic, Pbcn Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2n 2ab Cell parameters from 11280 reflections
a = 21.805 (4) Å θ = 1.9–27.6°
b = 9.871 (2) Å µ = 0.09 mm1
c = 8.8646 (18) Å T = 298 K
V = 1908.0 (6) Å3 Prism, colourless
Z = 4 0.35 × 0.31 × 0.28 mm

Data collection

Bruker SMART CCD diffractometer 2192 independent reflections
Radiation source: fine-focus sealed tube 1543 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 0 pixels mm-1 θmax = 27.6°, θmin = 1.9°
phi and ω scans h = −28→27
Absorption correction: multi-scan (SADABS; Bruker, 2002) k = −10→12
Tmin = 0.858, Tmax = 1.000 l = −10→11
11280 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.132 w = 1/[σ2(Fo2) + (0.0606P)2 + 0.335P] where P = (Fo2 + 2Fc2)/3
S = 1.04 (Δ/σ)max < 0.001
2192 reflections Δρmax = 0.17 e Å3
140 parameters Δρmin = −0.14 e Å3
24 restraints Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0102 (19)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
O1 0.36609 (7) 0.94335 (11) 0.09160 (14) 0.0784 (4)
O2 0.41410 (7) 0.77861 (13) −0.03024 (15) 0.0880 (5)
O3 0.43658 (5) 0.59258 (11) 0.20505 (13) 0.0632 (3)
C1 0.38057 (7) 0.81417 (15) 0.06775 (17) 0.0570 (4)
C02A 0.3859 (9) 1.0477 (15) −0.0051 (11) 0.075 (3) 0.41 (2)
H02A 0.4024 1.0099 −0.0976 0.090* 0.41 (2)
H02B 0.3518 1.1066 −0.0307 0.090* 0.41 (2)
C02B 0.4008 (7) 1.0397 (13) −0.0105 (13) 0.114 (4) 0.59 (2)
H02C 0.4421 1.0064 −0.0273 0.137* 0.59 (2)
H02D 0.3804 1.0466 −0.1074 0.137* 0.59 (2)
C2 0.34747 (7) 0.72278 (14) 0.17329 (15) 0.0522 (4)
C01A 0.4309 (8) 1.120 (2) 0.0708 (15) 0.127 (4) 0.41 (2)
H01A 0.4127 1.1683 0.1536 0.191* 0.41 (2)
H01B 0.4497 1.1835 0.0029 0.191* 0.41 (2)
H01C 0.4614 1.0587 0.1084 0.191* 0.41 (2)
C01B 0.4030 (7) 1.1719 (7) 0.0618 (8) 0.119 (3) 0.59 (2)
H01D 0.3620 1.2059 0.0738 0.179* 0.59 (2)
H01E 0.4262 1.2333 0.0004 0.179* 0.59 (2)
H01F 0.4220 1.1637 0.1590 0.179* 0.59 (2)
C3 0.28631 (8) 0.74645 (17) 0.20651 (18) 0.0654 (4)
H3A 0.2668 0.8215 0.1650 0.078*
C4 0.25382 (8) 0.6610 (2) 0.3000 (2) 0.0766 (5)
H4A 0.2126 0.6773 0.3198 0.092*
C5 0.28283 (8) 0.55161 (18) 0.3634 (2) 0.0730 (5)
H5A 0.2611 0.4946 0.4275 0.088*
C6 0.34359 (7) 0.52495 (15) 0.33381 (19) 0.0634 (4)
H6A 0.3627 0.4505 0.3778 0.076*
C7 0.37642 (7) 0.60994 (14) 0.23769 (16) 0.0518 (4)
C8 0.46777 (7) 0.48215 (15) 0.27597 (19) 0.0609 (4)
H8A 0.4482 0.3972 0.2493 0.073*
H8B 0.4662 0.4922 0.3848 0.073*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1251 (11) 0.0471 (6) 0.0631 (7) 0.0001 (6) 0.0089 (7) 0.0031 (5)
O2 0.1222 (11) 0.0685 (8) 0.0732 (8) 0.0098 (7) 0.0363 (8) 0.0084 (6)
O3 0.0597 (6) 0.0607 (6) 0.0692 (7) 0.0009 (5) 0.0008 (5) 0.0183 (5)
C1 0.0753 (9) 0.0505 (8) 0.0451 (7) 0.0019 (7) −0.0047 (7) −0.0018 (6)
C02A 0.128 (7) 0.054 (4) 0.043 (3) −0.014 (4) −0.014 (4) 0.008 (3)
C02B 0.174 (9) 0.065 (4) 0.104 (6) −0.006 (4) 0.034 (5) 0.020 (4)
C2 0.0654 (9) 0.0485 (7) 0.0425 (7) −0.0015 (6) −0.0024 (6) −0.0060 (6)
C01A 0.146 (10) 0.103 (9) 0.133 (7) −0.059 (7) 0.022 (6) 0.010 (7)
C01B 0.228 (10) 0.057 (3) 0.073 (3) −0.031 (4) −0.001 (4) 0.003 (2)
C3 0.0717 (10) 0.0647 (9) 0.0597 (9) 0.0118 (8) 0.0008 (8) −0.0057 (8)
C4 0.0655 (10) 0.0869 (12) 0.0774 (12) −0.0004 (9) 0.0129 (9) −0.0070 (10)
C5 0.0767 (11) 0.0687 (10) 0.0735 (11) −0.0147 (9) 0.0173 (9) 0.0001 (9)
C6 0.0733 (10) 0.0530 (8) 0.0640 (9) −0.0065 (7) 0.0039 (8) 0.0054 (7)
C7 0.0580 (8) 0.0487 (7) 0.0488 (8) −0.0043 (6) −0.0011 (6) −0.0018 (6)
C8 0.0677 (8) 0.0487 (8) 0.0662 (9) −0.0034 (7) −0.0087 (7) 0.0060 (7)

Geometric parameters (Å, º)

O1—C1 1.3306 (18) C01A—H01B 0.9600
O1—C02A 1.408 (14) C01A—H01C 0.9600
O1—C02B 1.516 (14) C01B—H01D 0.9600
O2—C1 1.1884 (19) C01B—H01E 0.9600
O3—C7 1.3541 (18) C01B—H01F 0.9600
O3—C8 1.4304 (17) C3—C4 1.379 (2)
C1—C2 1.487 (2) C3—H3A 0.9300
C02A—C01A 1.39 (2) C4—C5 1.372 (3)
C02A—H02A 0.9700 C4—H4A 0.9300
C02A—H02B 0.9700 C5—C6 1.376 (2)
C02B—C01B 1.455 (15) C5—H5A 0.9300
C02B—H02C 0.9700 C6—C7 1.394 (2)
C02B—H02D 0.9700 C6—H6A 0.9300
C2—C3 1.386 (2) C8—C8i 1.479 (3)
C2—C7 1.402 (2) C8—H8A 0.9700
C01A—H01A 0.9600 C8—H8B 0.9700
C1—O1—C02A 122.1 (7) C02B—C01B—H01F 109.5
C1—O1—C02B 112.8 (5) H01D—C01B—H01F 109.5
C02A—O1—C02B 12.6 (12) H01E—C01B—H01F 109.5
C7—O3—C8 117.59 (11) C4—C3—C2 121.27 (16)
O2—C1—O1 123.04 (15) C4—C3—H3A 119.4
O2—C1—C2 125.41 (14) C2—C3—H3A 119.4
O1—C1—C2 111.49 (13) C5—C4—C3 119.41 (16)
C01A—C02A—O1 107.4 (10) C5—C4—H4A 120.3
C01A—C02A—H02A 110.2 C3—C4—H4A 120.3
O1—C02A—H02A 110.2 C4—C5—C6 121.09 (16)
C01A—C02A—H02B 110.2 C4—C5—H5A 119.5
O1—C02A—H02B 110.2 C6—C5—H5A 119.5
H02A—C02A—H02B 108.5 C5—C6—C7 119.74 (15)
C01B—C02B—O1 108.4 (10) C5—C6—H6A 120.1
C01B—C02B—H02C 110.0 C7—C6—H6A 120.1
O1—C02B—H02C 110.0 O3—C7—C6 123.51 (13)
C01B—C02B—H02D 110.0 O3—C7—C2 116.73 (12)
O1—C02B—H02D 110.0 C6—C7—C2 119.73 (14)
H02C—C02B—H02D 108.4 O3—C8—C8i 108.37 (12)
C3—C2—C7 118.74 (14) O3—C8—H8A 110.0
C3—C2—C1 119.91 (13) C8i—C8—H8A 110.0
C7—C2—C1 121.32 (13) O3—C8—H8B 110.0
C02B—C01B—H01D 109.5 C8i—C8—H8B 110.0
C02B—C01B—H01E 109.5 H8A—C8—H8B 108.4
H01D—C01B—H01E 109.5
C02A—O1—C1—O2 4.9 (7) C1—C2—C3—C4 177.81 (15)
C02B—O1—C1—O2 −4.7 (6) C2—C3—C4—C5 1.1 (3)
C02A—O1—C1—C2 −172.4 (7) C3—C4—C5—C6 −0.8 (3)
C02B—O1—C1—C2 177.9 (6) C4—C5—C6—C7 −0.1 (3)
C1—O1—C02A—C01A −107.6 (14) C8—O3—C7—C6 −1.2 (2)
C02B—O1—C02A—C01A −63 (4) C8—O3—C7—C2 176.78 (13)
C1—O1—C02B—C01B −156.1 (10) C5—C6—C7—O3 178.61 (15)
C02A—O1—C02B—C01B 64 (4) C5—C6—C7—C2 0.7 (2)
O2—C1—C2—C3 −136.02 (18) C3—C2—C7—O3 −178.45 (13)
O1—C1—C2—C3 41.24 (19) C1—C2—C7—O3 3.3 (2)
O2—C1—C2—C7 42.3 (2) C3—C2—C7—C6 −0.4 (2)
O1—C1—C2—C7 −140.48 (14) C1—C2—C7—C6 −178.72 (13)
C7—C2—C3—C4 −0.5 (2) C7—O3—C8—C8i 179.76 (14)

Symmetry code: (i) −x+1, y, −z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5015).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans 2, pp. S1–19.
  2. Bruker (2002). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin,USA.
  3. Chanthapally, A., Kole, G. K., Qian, K., Tan, G. K., Gao, S. & Vittal, J. J. (2012). Chem. Eur. J. 8, 7869–7877. [DOI] [PubMed]
  4. Chen, X. & Liu, G. (2002). Chem. Eur. J. 8, 4811–4817. [DOI] [PubMed]
  5. Hou, L.-M. & Kan, Y.-H. (2007). Acta Cryst. E63, o2157–o2158.
  6. Ma, Z., Liang, B. & Lu, W. (2012). Acta Cryst. E68, m370. [DOI] [PMC free article] [PubMed]
  7. Ma, Z. & Liu, S.-X. (2002). Chin. J. Struct. Chem 21, 533–537.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Yan, C., Li, K., Wei, S.-C., Wang, H.-P., Fu, L., Pan, M. & Su, C.-Y. (2012). J. Mater. Chem 22, 9846–9852.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, dierster-0. DOI: 10.1107/S1600536814007673/wm5015sup1.cif

e-70-0o552-sup1.cif (20.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007673/wm5015Isup2.hkl

e-70-0o552-Isup2.hkl (107.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007673/wm5015Isup3.cml

CCDC reference: 995747

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES