Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 9;70(Pt 5):o529. doi: 10.1107/S1600536814007326

Bis(2,3-di­chloro­phen­yl) di­sulfide

Rebeca Nayely Osorio-Yáñez a, Carmela Crisóstomo-Lucas a, Ericka Santacruz-Juárez b,*, Reyna Reyes-Martínez a, David Morales-Morales a
PMCID: PMC4011246  PMID: 24860342

Abstract

The title compound, C12H6Cl4S2, features an S—S bond [2.0252 (8) Å] that bridges two 2,3-di­chloro­phenyl rings with a C—S—S—C torsion angle of 88.35 (11)°. The benzene rings are normal one to the other with a dihedral angle of 89.83 (11)°. The crystal structure features inter­molecular Cl⋯Cl [3.4763 (11) Å] and π–π stacking inter­actions [centroid–centroid distances = 3.696 (1) and 3.641 (2) Å]. Intra­molecular C—H⋯S inter­actions are also observed.

Related literature  

For applications of di­sulfide compounds, see: Crowley (1964); Hashash et al. (2002); Gomez-Benitez et al. (2006); Yu et al. (2010). For various methods of synthesizing disulfides, see: Xiao et al. (2009); Shaabani et al. (2008); Ogilby (2010). For similar compounds and their crystal structures, see: Deng et al. (2003); Korp & Bernal (1984); Tang et al. (2011). For di­sulfide bonds in proteins, see: Sevier & Kaiser (2006). For van der Waals radii, see: Bondi (1964).graphic file with name e-70-0o529-scheme1.jpg

Experimental  

Crystal data  

  • C12H6Cl4S2

  • M r = 356.09

  • Triclinic, Inline graphic

  • a = 7.7149 (10) Å

  • b = 7.7326 (11) Å

  • c = 12.748 (2) Å

  • α = 91.472 (2)°

  • β = 91.233 (3)°

  • γ = 114.859 (2)°

  • V = 689.37 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.14 mm−1

  • T = 298 K

  • 0.37 × 0.24 × 0.14 mm

Data collection  

  • Bruker SMART APEX CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2008) T min = 0.678, T max = 0.862

  • 7044 measured reflections

  • 3130 independent reflections

  • 2594 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.035

  • wR(F 2) = 0.088

  • S = 1.03

  • 3130 reflections

  • 163 parameters

  • H-atom parameters constrained

  • Δρmax = 0.41 e Å−3

  • Δρmin = −0.30 e Å−3

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007326/bx2456sup1.cif

e-70-0o529-sup1.cif (219.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007326/bx2456Isup2.hkl

e-70-0o529-Isup2.hkl (171.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007326/bx2456Isup3.cml

CCDC reference: 994982

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯S2 0.93 2.70 3.202 (2) 115
C12—H12⋯S1 0.93 2.70 3.199 (2) 115

Acknowledgments

This work was supported by CONACYT (grant No. CB2010–154732) and PAPIIT (grants IN201711–3 and IN213214–3). ESJ thanks PROMEP "Apoyo a perfil deseable". RRM and DMM thank Dr Ruben A. Toscano for technical assistance.

supplementary crystallographic information

1. Introduction

The di­sulfide bonds are found in proteins (Sevier and Kaiser, 2006), natural products and pharmacologically active compounds. Di­sulfide compounds have shown to exhibit activity as fungicide, mildew-proofing (Crowley, 1964) and anti­tumor agents (Hashash et al., 2002). In organic synthesis di­sulfides are used in cross-coupling reactions catalyzed by transition metal compounds such as palladium, nickel and copper (Gomez-Benitez et al., 2006; Yu et al., 2010).

Several methods for the synthesis of di­sulfides have been reported. These processes involve the oxidative coupling of mercaptans by various oxidants such as molecular oxygen, nitric oxide, solvent-free permanganate, metal ions and promoted by sulfonyl chloride in aqueous media (Xiao et al., 2009; Shaabani et al., 2008; Ogilby, 2010).

Thus, in this report we present the crystal structure of the bis­(2,3-di­chloro­phenyl)­disulfide obtained by a nucleophilic substitution reaction. The structure is represented in figure 1.

2. Experimental

2.1. Synthesis and crystallization

The title compound was obtained as a by-product of the reaction between 2-(chloro­methyl)­benzimidazole (0.2 g) and the lead salt of 2,3-di­chloro­benze­thiol ([Pb(SC6H3-2,3-Cl2)2]) (0.337 g) in toluene. The resulting reaction mixture was allowed to proceed under reflux by 8 h after which time the formation of PbCl2 was observed indicating completion of the reaction. The reaction mixture was then filtered through a short Celite plug to afford a colorless solution, the solvent was evaporated under vacuum and the residue column chromatographed (silica gel 60, eluted with 3/2 ethyl acetate/hexane system). Slow Evaporation of the first fraction collected produced crystals of the title compound suitable for X-ray diffraction analysis.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1.

H atoms were included in calculated positions (C—H = 0.93 A for aromatic H) and refined using a riding model with Uiso(H) = 1.2 Ueq of the carrier atoms.

In the refinement six reflections, (2 0 0), (0 1 3), (0 0 1), (-2 1 2), (2 -4 3) and (-1 0 1), were considered as disagreeable and were omitted.

3. Results and discussion

The asymmetric unit of the title compound consists of one molecule on the di­sulfide. The rings of the bis­(2,3-di­chloro­phenyl)­disulfide show a dihedral angle of 89.83° between the two planes and a torsion angle C1—S1—S2—C7 of 88.35 (11)°. The value of the C—S—S—C torsion angle is similar to those found in similar compounds, such as bis­(penta­chloro­phenyl)­disulfide (Deng et al., 2003), di­phenyl­disulfide (Korp & Bernal, 1984) and bis­(4-amino-2-chloro­phenyl)­disulfide (Tang et al., 2011). The S—S distance is 2.0252 (8) Å, whereas the C—S distances are 1.784 (2) and 1.7835 (19) Å. These values are similar and close in value to compounds such as bis­(penta­chloro­phenyl)­disulfide with a S—S distance of 2.063 (2) Å and bis­(4-amino-2-chloro­phenyl)­disulfide of 2.0671 (16) Å. The crystal packing is stabilized by π-π and Cl···Cl inter­actions (Figure 2). The π-π inter­actions of the 2,3-di­chloro­phenyl rings presents distances between centroids of 3.696 (1) and 3.641 (2) Å. The Cl1···Cl2 contact distance is of 3.476 Å that is close to the sum of the van der Waals radii of the chloride atoms (Bondi, 1964). The sulphur atoms present C—H···S intra­molecular inter­actions, these values are in the table 1.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 40% probability of displacement ellipsoids for the non-hydrogen atoms.

Fig. 2.

Fig. 2.

Representation of the π-π and Cl···Cl interactions shown by dashed lines. Hydrogen atoms are omitted.

Crystal data

C12H6Cl4S2 Z = 2
Mr = 356.09 F(000) = 356
Triclinic, P1 Dx = 1.715 Mg m3
a = 7.7149 (10) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.7326 (11) Å Cell parameters from 4288 reflections
c = 12.748 (2) Å θ = 2.8–27.5°
α = 91.472 (2)° µ = 1.14 mm1
β = 91.233 (3)° T = 298 K
γ = 114.859 (2)° Prism, colourless
V = 689.37 (18) Å3 0.37 × 0.24 × 0.14 mm

Data collection

Bruker SMART APEX CCD diffractometer 3130 independent reflections
Radiation source: fine-focus sealed tube 2594 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
Detector resolution: 8.333 pixels mm-1 θmax = 27.5°, θmin = 2.9°
ω scans h = −9→9
Absorption correction: multi-scan (SADABS; Sheldrick, 2008) k = −10→10
Tmin = 0.678, Tmax = 0.862 l = −16→16
7044 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.088 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0397P)2 + 0.1749P] where P = (Fo2 + 2Fc2)/3
3130 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.41 e Å3
0 restraints Δρmin = −0.30 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.81619 (10) 0.72799 (9) 0.12199 (5) 0.06495 (19)
Cl2 1.23381 (10) 0.95252 (8) 0.04969 (5) 0.0714 (2)
Cl3 0.64782 (10) −0.26178 (7) 0.37441 (5) 0.06220 (18)
Cl4 0.75120 (11) −0.22491 (11) 0.61516 (5) 0.0772 (2)
S1 0.67633 (8) 0.32903 (8) 0.20430 (5) 0.05302 (16)
S2 0.64526 (8) 0.07120 (7) 0.25388 (4) 0.05061 (16)
C1 0.9189 (3) 0.4447 (3) 0.16702 (13) 0.0369 (4)
C2 0.9766 (3) 0.6267 (3) 0.12843 (13) 0.0372 (4)
C3 1.1620 (3) 0.7266 (3) 0.09688 (15) 0.0433 (4)
C4 1.2912 (3) 0.6466 (3) 0.10343 (18) 0.0539 (5)
H4 1.4159 0.7138 0.0825 0.065*
C5 1.2338 (3) 0.4663 (3) 0.14126 (18) 0.0548 (5)
H5 1.3207 0.4119 0.1455 0.066*
C6 1.0495 (3) 0.3650 (3) 0.17301 (16) 0.0462 (5)
H6 1.0129 0.2434 0.1984 0.055*
C7 0.7117 (3) 0.1092 (3) 0.39027 (14) 0.0364 (4)
C8 0.7107 (3) −0.0468 (3) 0.44284 (14) 0.0378 (4)
C9 0.7575 (3) −0.0306 (3) 0.54892 (16) 0.0447 (5)
C10 0.8069 (3) 0.1407 (4) 0.60354 (17) 0.0564 (6)
H10 0.8395 0.1517 0.6748 0.068*
C11 0.8078 (3) 0.2947 (3) 0.55208 (18) 0.0561 (6)
H11 0.8405 0.4099 0.5891 0.067*
C12 0.7608 (3) 0.2809 (3) 0.44603 (17) 0.0460 (5)
H12 0.7620 0.3864 0.4121 0.055*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0859 (4) 0.0712 (4) 0.0671 (4) 0.0592 (3) 0.0296 (3) 0.0276 (3)
Cl2 0.0806 (4) 0.0444 (3) 0.0751 (4) 0.0115 (3) 0.0078 (3) 0.0195 (3)
Cl3 0.0915 (5) 0.0416 (3) 0.0596 (4) 0.0333 (3) 0.0146 (3) 0.0022 (2)
Cl4 0.0910 (5) 0.0889 (5) 0.0677 (4) 0.0512 (4) 0.0099 (3) 0.0389 (3)
S1 0.0447 (3) 0.0628 (3) 0.0570 (3) 0.0262 (3) 0.0104 (2) 0.0284 (3)
S2 0.0609 (3) 0.0430 (3) 0.0377 (3) 0.0117 (2) −0.0002 (2) 0.0080 (2)
C1 0.0414 (10) 0.0419 (9) 0.0290 (9) 0.0188 (8) 0.0000 (7) 0.0059 (7)
C2 0.0487 (11) 0.0412 (9) 0.0274 (9) 0.0246 (9) 0.0011 (7) 0.0022 (7)
C3 0.0511 (12) 0.0395 (10) 0.0329 (9) 0.0128 (9) −0.0014 (8) 0.0030 (7)
C4 0.0364 (11) 0.0659 (14) 0.0526 (13) 0.0148 (10) −0.0018 (9) 0.0069 (11)
C5 0.0465 (12) 0.0707 (14) 0.0576 (13) 0.0348 (11) −0.0038 (10) 0.0085 (11)
C6 0.0476 (11) 0.0481 (11) 0.0481 (11) 0.0251 (9) −0.0026 (9) 0.0112 (9)
C7 0.0341 (9) 0.0373 (9) 0.0347 (9) 0.0116 (7) 0.0058 (7) 0.0057 (7)
C8 0.0383 (10) 0.0372 (9) 0.0396 (10) 0.0168 (8) 0.0093 (8) 0.0062 (7)
C9 0.0377 (10) 0.0543 (12) 0.0433 (11) 0.0197 (9) 0.0065 (8) 0.0144 (9)
C10 0.0462 (12) 0.0723 (15) 0.0395 (11) 0.0141 (11) −0.0012 (9) 0.0010 (10)
C11 0.0520 (13) 0.0469 (12) 0.0547 (13) 0.0070 (10) 0.0028 (10) −0.0125 (10)
C12 0.0456 (11) 0.0338 (9) 0.0536 (12) 0.0115 (8) 0.0046 (9) 0.0054 (8)

Geometric parameters (Å, º)

Cl1—C2 1.7224 (19) C5—C6 1.380 (3)
Cl2—C3 1.725 (2) C5—H5 0.9300
Cl3—C8 1.7291 (19) C6—H6 0.9300
Cl4—C9 1.726 (2) C7—C12 1.389 (3)
S1—C1 1.784 (2) C7—C8 1.392 (3)
S1—S2 2.0252 (8) C8—C9 1.381 (3)
S2—C7 1.7834 (19) C9—C10 1.378 (3)
C1—C6 1.386 (3) C10—C11 1.372 (3)
C1—C2 1.393 (2) C10—H10 0.9300
C2—C3 1.384 (3) C11—C12 1.382 (3)
C3—C4 1.378 (3) C11—H11 0.9300
C4—C5 1.378 (3) C12—H12 0.9300
C4—H4 0.9300
C1—S1—S2 105.09 (7) C1—C6—H6 120.0
C7—S2—S1 105.02 (7) C12—C7—C8 119.02 (17)
C6—C1—C2 119.06 (18) C12—C7—S2 124.42 (15)
C6—C1—S1 124.55 (15) C8—C7—S2 116.55 (14)
C2—C1—S1 116.38 (14) C9—C8—C7 120.32 (17)
C3—C2—C1 120.36 (18) C9—C8—Cl3 120.28 (15)
C3—C2—Cl1 120.22 (14) C7—C8—Cl3 119.39 (14)
C1—C2—Cl1 119.42 (15) C10—C9—C8 120.27 (19)
C4—C3—C2 120.23 (18) C10—C9—Cl4 119.19 (17)
C4—C3—Cl2 119.41 (17) C8—C9—Cl4 120.53 (16)
C2—C3—Cl2 120.36 (16) C11—C10—C9 119.6 (2)
C5—C4—C3 119.4 (2) C11—C10—H10 120.2
C5—C4—H4 120.3 C9—C10—H10 120.2
C3—C4—H4 120.3 C10—C11—C12 120.9 (2)
C4—C5—C6 121.0 (2) C10—C11—H11 119.5
C4—C5—H5 119.5 C12—C11—H11 119.5
C6—C5—H5 119.5 C11—C12—C7 119.85 (19)
C5—C6—C1 119.93 (19) C11—C12—H12 120.1
C5—C6—H6 120.0 C7—C12—H12 120.1
S2—S1—C1—C6 0.06 (18) S1—S2—C7—C12 3.60 (18)
S2—S1—C1—C2 179.34 (12) S1—S2—C7—C8 −177.28 (13)
C6—C1—C2—C3 −0.2 (3) C12—C7—C8—C9 0.1 (3)
S1—C1—C2—C3 −179.52 (14) S2—C7—C8—C9 −179.02 (14)
C6—C1—C2—Cl1 −179.31 (14) C12—C7—C8—Cl3 179.45 (14)
S1—C1—C2—Cl1 1.4 (2) S2—C7—C8—Cl3 0.3 (2)
C1—C2—C3—C4 0.0 (3) C7—C8—C9—C10 −0.5 (3)
Cl1—C2—C3—C4 179.07 (16) Cl3—C8—C9—C10 −179.76 (16)
C1—C2—C3—Cl2 −179.68 (14) C7—C8—C9—Cl4 178.52 (14)
Cl1—C2—C3—Cl2 −0.6 (2) Cl3—C8—C9—Cl4 −0.8 (2)
C2—C3—C4—C5 0.3 (3) C8—C9—C10—C11 0.6 (3)
Cl2—C3—C4—C5 179.91 (17) Cl4—C9—C10—C11 −178.44 (17)
C3—C4—C5—C6 −0.3 (3) C9—C10—C11—C12 −0.3 (3)
C4—C5—C6—C1 0.0 (3) C10—C11—C12—C7 0.0 (3)
C2—C1—C6—C5 0.2 (3) C8—C7—C12—C11 0.1 (3)
S1—C1—C6—C5 179.46 (16) S2—C7—C12—C11 179.18 (16)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6···S2 0.93 2.70 3.202 (2) 115
C12—H12···S1 0.93 2.70 3.199 (2) 115

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BX2456).

References

  1. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Bruker (2012). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Crowley, D. J. (1964). US Patent No. 3 150 186.
  5. Deng, S.-L., Long, L.-S., Xie, S.-Y., Huang, R.-B., Zheng, L.-S. & Ng, S. W. (2003). Acta Cryst. E59, o843–o844.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Gomez-Benitez, V., Baldovino-Pantaleon, O., Herrera-Alvarez, C., Toscano, R. A. & Morales-Morales, D. (2006). Tetrahedron Lett. 47, 5059–5062.
  8. Hashash, A., Kirkpatrick, D. L., Lazo, J. S. & Block, L. H. (2002). J. Pharm. Sci. 91, 1686–1692. [DOI] [PubMed]
  9. Korp, J. D. & Bernal, I. (1984). J. Mol. Struct. 118, 157–164.
  10. Ogilby, P. R. (2010). Chem. Soc. Rev. 39, 3181–3209. [DOI] [PubMed]
  11. Sevier, C. S. & Kaiser, C. A. (2006). Antioxid. Redox Signal. 8, 797–811. [DOI] [PubMed]
  12. Shaabani, A., Safari, N., Shoghpour, S. & Hossein, A. R. (2008). Monatsh. Chem. 139, 613–615.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  15. Tang, J.-M., Feng, Z.-Q. & Cheng, W. (2011). Acta Cryst. E67, o1197. [DOI] [PMC free article] [PubMed]
  16. Xiao, H., Chen, J., Liu, M., Wu, H. & Ding, J. (2009). Phosphorus Sulfur Silicon Relat. Elem. 184, 2553–2559.
  17. Yu, C., Jin, B., Liu, Z. & Zhong, W. (2010). Can. J. Chem. 88, 485–491.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007326/bx2456sup1.cif

e-70-0o529-sup1.cif (219.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007326/bx2456Isup2.hkl

e-70-0o529-Isup2.hkl (171.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007326/bx2456Isup3.cml

CCDC reference: 994982

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES