Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 16;70(Pt 5):o559. doi: 10.1107/S1600536814007946

2-(5-Methyl-1,3,4-oxa­diazol-2-yl)phenyl acetate

Alexsandro F dos Santos a, Rodrigo Cristiano a, Petrônio F Athayde-Filho a, Adailton J Bortoluzzi b,*
PMCID: PMC4011247  PMID: 24860366

Abstract

In the title compound, C11H10N2O3, which is a potential bioactive compound, the benzene and oxa­diazole rings are approximately coplanar, with an inter-ring dihedral angle of 4.14 (2)°, while the ester plane is rotated out of the benzene plane [dihedral angle = 82.69 (9)°]. In the crystal, the mol­ecules form layers down the a axis with weak π–π inter­actions between the oxa­diazole and benzene rings [minimum ring centroid separation = 3.7706 (14) Å].

Related literature  

For the bioactivity of 1,3,4-oxa­diazole derivatives, see: Boström et al. (2012); Rajak et al. (2009); Polshettiwar & Varma (2008). For the properties of the 1,3,4-oxa­diazole heterocycle, see: Bolton & Kim (2007); Liu et al. (2007); Kulkarni et al. (2004). For material chemistry applications, see: Hughes & Bryce (2005); Wang et al. (2011); Cristiano et al. (2006); Han (2013). For the synthesis, see: Gallardo et al. (2001). For related structures, see: Vencato et al. (1996); Gutov (2013).graphic file with name e-70-0o559-scheme1.jpg

Experimental  

Crystal data  

  • C11H10N2O3

  • M r = 218.21

  • Monoclinic, Inline graphic

  • a = 6.6335 (6) Å

  • b = 16.925 (3) Å

  • c = 9.5078 (6) Å

  • β = 92.113 (6)°

  • V = 1066.7 (2) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 293 K

  • 0.50 × 0.36 × 0.16 mm

Data collection  

  • Enraf–Nonius CAD-4 diffractometer

  • 1998 measured reflections

  • 1885 independent reflections

  • 1403 reflections with I > 2σ(I)

  • R int = 0.018

  • 3 standard reflections every 200 reflections intensity decay: 1%

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.044

  • wR(F 2) = 0.136

  • S = 1.11

  • 1885 reflections

  • 146 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: SET4 in CAD-4 Software; data reduction: HELENA (Spek, 1996); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814007946/zs2285sup1.cif

e-70-0o559-sup1.cif (87.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007946/zs2285Isup2.hkl

e-70-0o559-Isup2.hkl (103.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007946/zs2285Isup3.mol

Supporting information file. DOI: 10.1107/S1600536814007946/zs2285Isup4.cml

CCDC reference: 996388

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), the Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (FAPESC), the Financiadora de Estudos e Projetos (FINEP) and the Instituto Nacional de Ciência e Tecnologia (INCT) - Catálise for financial assistance.

supplementary crystallographic information

1. Comment

Molecules containing the heterocycle 1,3,4-oxadiazole exhibit a wide range of biological activities, such as anticancer, antidiabetic, anti-inflammatory, analgesic, antibacterial, anticonvulsant, anti-HIV, herbicidal, fungicidal, pesticidal and antihypertensive (Boström et al., 2012; Rajak et al., 2009). This five-membered ring has been studied as a potential pharmacophore in a variety of chemical structures, due to its favorable metabolic profile and its capability of forming H-bonding associations (Polshettiwar & Varma, 2008; Gutov, 2013). Furthermore, aromatic substituted 1,3,4-oxadiazoles have widely been used in electro-optical devices due to their good thermal and chemical stability, blue luminescence with high quantum yield and electron transporting capabilities (Hughes & Bryce, 2005; Han, 2013).

As part of our continuing interest in the synthesis and evaluation of bioactive molecules containing N-heterocycles, we now report the synthesis and structure of the title compound C11H10N2O3. In this structure (Fig. 1), the benzene and oxadiazole rings are approximately coplanar, with an inter-ring dihedral angle of 4.14 (2)°, while the ester plane defined by O1, O2, C13, C14 is rotated out of the benzene plane giving a dihedral angle of 82.69 (9)° which corresponds to a torsion angle C6—C7—O1—C13 of 83.26 (22)°. In the crystal the molecules form layers down the a axis with weak inter-layer π–π interactions between the oxadiazole and benzene rings [minimum ring centroid separation = 3.7706 (14) Å].

2. Experimental

A mixture of 5-(2-hydroxyphenyl)tetrazole (Gallardo et al., 2001) (2.0 g, 12.3 mmol) and acetic anhydride (6.3 g, 61.5 mmol) was heated under reflux for 2 h. The reaction mixture was poured into water/ice, the precipitate was filtered, washed with cold water and dried under vacuum to give the title compound as a white solid (1.88 g, 70%). Crystals suitable for X-ray diffraction were obtained from slow evaporation of the CDCl3 solution. M.p.= 108 °C. 1H NMR (CDCl3) = 8.00 (dd, J = 7.8 and 1.6 Hz, 1H), 7.60 - 7.51 (m, 1H), 7.38 (t, J = 7.8 Hz, 1H), 7.23 (t, J = 7.8 Hz, 1H), 2.60 (s, 3H), 2.42 (s, 3H); 13C NMR (CDCl3) = 169.88, 163.35, 162.12, 148.68, 132.67, 129.21, 126.60, 124.22, 117.65, 21.20, 11.08.

3. Refinement

All non-H atoms were refined with anisotropic displacement parameters. Hydrogen atoms were placed at their idealized positions with distances of 0.93 Å for C—HAr and 0.96 Å for CH3 groups and allowed to ride. Their Ueq were fixed at 1.2 and 1.5 times Uiso of the preceding atom for aromatic and methyl groups, respectively. H atoms of the methyl groups were treated as ideally disordered over two sites.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound with atom labeling scheme. Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C11H10N2O3 Dx = 1.359 Mg m3
Mr = 218.21 Melting point: 381 K
Monoclinic, P21/n Mo Kα radiation, λ = 0.71069 Å
a = 6.6335 (6) Å Cell parameters from 25 reflections
b = 16.925 (3) Å θ = 6.5–15.6°
c = 9.5078 (6) Å µ = 0.10 mm1
β = 92.113 (6)° T = 293 K
V = 1066.7 (2) Å3 Block, colorless
Z = 4 0.50 × 0.36 × 0.16 mm
F(000) = 456

Data collection

Enraf–Nonius CAD-4 diffractometer θmax = 25.1°, θmin = 2.4°
Radiation source: fine-focus sealed tube h = −7→7
ω–2θ scans k = −20→0
1998 measured reflections l = −11→0
1885 independent reflections 3 standard reflections every 200 reflections
1403 reflections with I > 2σ(I) intensity decay: 1%
Rint = 0.018

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.044 w = 1/[σ2(Fo2) + (0.07P)2 + 0.1662P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.136 (Δ/σ)max < 0.001
S = 1.11 Δρmax = 0.24 e Å3
1885 reflections Δρmin = −0.20 e Å3
146 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.020 (4)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C3 0.7116 (3) 0.20207 (12) 0.5466 (2) 0.0529 (5)
C5 0.7187 (3) 0.09558 (12) 0.42764 (19) 0.0449 (5)
C6 0.7352 (3) 0.00994 (11) 0.4065 (2) 0.0438 (5)
C7 0.7258 (3) −0.02402 (12) 0.2733 (2) 0.0466 (5)
C8 0.7460 (3) −0.10475 (13) 0.2556 (2) 0.0572 (6)
H8 0.7388 −0.1265 0.1658 0.069*
C9 0.7766 (3) −0.15261 (13) 0.3706 (3) 0.0613 (6)
H9 0.7912 −0.2068 0.3587 0.074*
C10 0.7858 (3) −0.12053 (13) 0.5041 (3) 0.0602 (6)
H10 0.8053 −0.1532 0.5820 0.072*
C11 0.7660 (3) −0.03993 (13) 0.5220 (2) 0.0509 (5)
H11 0.7733 −0.0187 0.6123 0.061*
C12 0.7142 (4) 0.25279 (14) 0.6729 (3) 0.0694 (7)
H12A 0.7253 0.2204 0.7557 0.104* 0.5
H12B 0.5916 0.2829 0.6741 0.104* 0.5
H12C 0.8274 0.2881 0.6712 0.104* 0.5
H12D 0.7043 0.3072 0.6449 0.104* 0.5
H12E 0.8379 0.2447 0.7266 0.104* 0.5
H12F 0.6021 0.2395 0.7295 0.104* 0.5
C13 0.8374 (4) 0.06195 (13) 0.0975 (2) 0.0552 (6)
C14 0.7638 (4) 0.11009 (17) −0.0244 (3) 0.0776 (8)
H14A 0.6205 0.1038 −0.0371 0.116* 0.5
H14B 0.8285 0.0929 −0.1077 0.116* 0.5
H14C 0.7949 0.1647 −0.0073 0.116* 0.5
H14D 0.8754 0.1371 −0.0643 0.116* 0.5
H14E 0.6674 0.1481 0.0063 0.116* 0.5
H14F 0.7011 0.0762 −0.0942 0.116* 0.5
N1 0.7036 (3) 0.15221 (10) 0.33808 (19) 0.0611 (5)
N2 0.6990 (3) 0.22223 (11) 0.4170 (2) 0.0669 (6)
O1 0.6816 (2) 0.02180 (8) 0.15409 (14) 0.0548 (4)
O2 1.0070 (2) 0.05640 (10) 0.14221 (17) 0.0666 (5)
O4 0.7239 (2) 0.12238 (8) 0.56256 (14) 0.0491 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C3 0.0587 (13) 0.0460 (12) 0.0541 (13) 0.0042 (10) 0.0026 (10) −0.0013 (10)
C5 0.0451 (11) 0.0506 (11) 0.0391 (10) 0.0001 (8) 0.0021 (8) 0.0012 (9)
C6 0.0368 (10) 0.0470 (11) 0.0476 (11) −0.0006 (8) 0.0021 (8) 0.0024 (9)
C7 0.0421 (10) 0.0490 (12) 0.0487 (12) −0.0030 (8) 0.0011 (8) 0.0009 (9)
C8 0.0546 (12) 0.0531 (13) 0.0639 (14) −0.0025 (10) 0.0026 (10) −0.0103 (11)
C9 0.0547 (14) 0.0443 (12) 0.0853 (18) 0.0006 (10) 0.0070 (12) 0.0026 (12)
C10 0.0504 (12) 0.0543 (13) 0.0762 (16) 0.0013 (10) 0.0056 (11) 0.0214 (11)
C11 0.0452 (11) 0.0561 (13) 0.0517 (12) −0.0011 (9) 0.0057 (9) 0.0100 (10)
C12 0.0863 (17) 0.0600 (14) 0.0617 (15) 0.0041 (13) −0.0012 (12) −0.0142 (11)
C13 0.0674 (15) 0.0549 (13) 0.0434 (11) 0.0016 (11) 0.0032 (10) −0.0043 (9)
C14 0.0953 (19) 0.0802 (18) 0.0571 (14) 0.0043 (14) 0.0002 (13) 0.0150 (13)
N1 0.0915 (14) 0.0473 (10) 0.0446 (11) 0.0068 (9) 0.0045 (9) 0.0027 (8)
N2 0.0977 (15) 0.0453 (10) 0.0580 (12) 0.0072 (10) 0.0057 (10) 0.0011 (9)
O1 0.0577 (9) 0.0606 (9) 0.0456 (8) −0.0032 (7) −0.0046 (6) 0.0004 (7)
O2 0.0631 (11) 0.0777 (12) 0.0591 (10) −0.0034 (8) 0.0038 (8) 0.0065 (8)
O4 0.0542 (8) 0.0504 (8) 0.0427 (8) 0.0029 (6) 0.0007 (6) −0.0010 (6)

Geometric parameters (Å, º)

C3—N2 1.278 (3) C12—H12A 0.9600
C3—O4 1.359 (2) C12—H12B 0.9600
C3—C12 1.476 (3) C12—H12C 0.9600
C5—N1 1.283 (3) C12—H12D 0.9600
C5—O4 1.360 (2) C12—H12E 0.9600
C5—C6 1.468 (3) C12—H12F 0.9600
C6—C7 1.390 (3) C13—O2 1.191 (3)
C6—C11 1.395 (3) C13—O1 1.364 (3)
C7—C8 1.384 (3) C13—C14 1.485 (3)
C7—O1 1.395 (2) C14—H14A 0.9600
C8—C9 1.370 (3) C14—H14B 0.9600
C8—H8 0.9300 C14—H14C 0.9600
C9—C10 1.380 (3) C14—H14D 0.9600
C9—H9 0.9300 C14—H14E 0.9600
C10—C11 1.382 (3) C14—H14F 0.9600
C10—H10 0.9300 N1—N2 1.404 (3)
C11—H11 0.9300
N2—C3—O4 111.94 (18) H12C—C12—H12E 56.3
N2—C3—C12 128.9 (2) H12D—C12—H12E 109.5
O4—C3—C12 119.19 (19) C3—C12—H12F 109.5
N1—C5—O4 112.05 (17) H12A—C12—H12F 56.3
N1—C5—C6 130.60 (18) H12B—C12—H12F 56.3
O4—C5—C6 117.34 (16) H12C—C12—H12F 141.1
C7—C6—C11 117.89 (19) H12D—C12—H12F 109.5
C7—C6—C5 122.15 (17) H12E—C12—H12F 109.5
C11—C6—C5 119.94 (18) O2—C13—O1 122.6 (2)
C8—C7—C6 121.16 (19) O2—C13—C14 126.9 (2)
C8—C7—O1 117.97 (18) O1—C13—C14 110.4 (2)
C6—C7—O1 120.73 (17) C13—C14—H14A 109.5
C9—C8—C7 120.0 (2) C13—C14—H14B 109.5
C9—C8—H8 120.0 H14A—C14—H14B 109.5
C7—C8—H8 120.0 C13—C14—H14C 109.5
C8—C9—C10 120.1 (2) H14A—C14—H14C 109.5
C8—C9—H9 119.9 H14B—C14—H14C 109.5
C10—C9—H9 119.9 C13—C14—H14D 109.5
C9—C10—C11 120.1 (2) H14A—C14—H14D 141.1
C9—C10—H10 120.0 H14B—C14—H14D 56.3
C11—C10—H10 120.0 H14C—C14—H14D 56.3
C10—C11—C6 120.8 (2) C13—C14—H14E 109.5
C10—C11—H11 119.6 H14A—C14—H14E 56.3
C6—C11—H11 119.6 H14B—C14—H14E 141.1
C3—C12—H12A 109.5 H14C—C14—H14E 56.3
C3—C12—H12B 109.5 H14D—C14—H14E 109.5
H12A—C12—H12B 109.5 C13—C14—H14F 109.5
C3—C12—H12C 109.5 H14A—C14—H14F 56.3
H12A—C12—H12C 109.5 H14B—C14—H14F 56.3
H12B—C12—H12C 109.5 H14C—C14—H14F 141.1
C3—C12—H12D 109.5 H14D—C14—H14F 109.5
H12A—C12—H12D 141.1 H14E—C14—H14F 109.5
H12B—C12—H12D 56.3 C5—N1—N2 106.16 (17)
H12C—C12—H12D 56.3 C3—N2—N1 106.76 (17)
C3—C12—H12E 109.5 C13—O1—C7 117.22 (16)
H12A—C12—H12E 56.3 C3—O4—C5 103.10 (15)
H12B—C12—H12E 141.1
C7—O1—C13—C14 −177.68 (18) N1—C5—C6—C11 175.0 (2)
C13—O1—C7—C6 83.3 (2) O4—C5—C6—C11 −3.4 (3)
C13—O1—C7—C8 −101.1 (2) N1—C5—C6—C7 −3.5 (3)
C7—O1—C13—O2 3.3 (3) C11—C6—C7—O1 175.59 (17)
C3—O4—C5—C6 178.30 (17) C7—C6—C11—C10 −0.2 (3)
C5—O4—C3—N2 0.4 (2) C11—C6—C7—C8 0.1 (3)
C3—O4—C5—N1 −0.4 (2) C5—C6—C7—C8 178.61 (19)
C5—O4—C3—C12 −179.60 (19) C5—C6—C7—O1 −5.9 (3)
C5—N1—N2—C3 0.0 (2) C5—C6—C11—C10 −178.75 (19)
N2—N1—C5—O4 0.2 (2) C6—C7—C8—C9 −0.2 (3)
N2—N1—C5—C6 −178.2 (2) O1—C7—C8—C9 −175.85 (18)
N1—N2—C3—O4 −0.2 (2) C7—C8—C9—C10 0.5 (3)
N1—N2—C3—C12 179.7 (2) C8—C9—C10—C11 −0.6 (3)
O4—C5—C6—C7 178.11 (18) C9—C10—C11—C6 0.5 (3)

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2285).

References

  1. Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
  2. Bolton, O. & Kim, J. (2007). J. Mater. Chem. 17, 1981–1988.
  3. Boström, J., Hogner, A., Llinàs, A., Wellner, E. & Plowright, A. T. (2012). J. Med. Chem. 55, 1817–1830. [DOI] [PubMed]
  4. Cristiano, R., Vieira, A. A., Ely, F. & Gallardo, H. (2006). Liq. Cryst. 33, 381–390.
  5. Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  6. Gallardo, H., Magnago, R. & Bortoluzzi, A. J. (2001). Liq. Cryst. 28, 1343–1352.
  7. Gutov, O. V. (2013). Cryst. Growth Des. 13, 3953–3957.
  8. Han, J. (2013). J. Mater. Chem. C1, 7779–7797.
  9. Hughes, G. & Bryce, B. (2005). J. Mater. Chem. 15, 94–107.
  10. Kulkarni, A. P., Tonzola, C. J., Babel, A. & Jenekhe, S. A. (2004). Chem. Mater. 16, 4556–4573.
  11. Liu, Y., Zong, L., Zheng, L., Wu, L. & Cheng, Y. (2007). Polymer, 48, 6799–6807.
  12. Polshettiwar, V. & Varma, R. S. (2008). Tetrahedron Lett. 49, 879–883.
  13. Rajak, H., Kharya, M. D. & Mishra, P. (2009). Int. J. Pharm. Sci. Nanotech. 1, 390–406.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (1996). HELENA University of Utrecht, The Netherlands.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Vencato, I., Gallardo, H. & Meyer, E. (1996). Acta Cryst. C52, 2301–2303.
  18. Wang, X., Guang, S., Xu, H., Su, X. & Lin, N. (2011). J. Mater. Chem. 21, 12941–12948.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814007946/zs2285sup1.cif

e-70-0o559-sup1.cif (87.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007946/zs2285Isup2.hkl

e-70-0o559-Isup2.hkl (103.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007946/zs2285Isup3.mol

Supporting information file. DOI: 10.1107/S1600536814007946/zs2285Isup4.cml

CCDC reference: 996388

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES