Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 30;70(Pt 5):o620. doi: 10.1107/S160053681400909X

6-Cyanona­phthalen-2-yl 4-hexyl­benzo­ate

Md Lutfor Rahman a,*, H T Srinivasa b, Mohd Yusoff Mashitah a, Huey Chong Kwong c, Ching Kheng Quah d
PMCID: PMC4011248  PMID: 24860410

Abstract

In the title compound, C24H23NO2, a whole mol­ecule is disordered over two sets of sites with occupancies in a ratio of 0.692 (6):0.308 (6). In the major disorder component, the naphthalene ring system forms a dihedral angle of 68.6 (5)° with the benzene ring. The corresponding angle in the minor component is 81.6 (10)°. In the crystal, mol­ecules are linked into chains propagating along the b-axis direction via weak C—H⋯O hydrogen bonds. The crystal packing is further consolidated by weak C—H⋯π inter­actions.

Related literature  

For features of electro-optical display devices, see: Cox & Clecak (1976); Reddy & Tschierske (2006); Hanasaki et al. (2011) For applications of cyano groups in liquid crystal displays, see: Coates & Gray (1976); Klingbiel et al. (1974); Takezoe & Takanishi (2006). For related structures, see: Kuzmina et al. (2010); Blake et al. (1995); Li (2006). For standard bond-length data, see: Allen et al. (1987).graphic file with name e-70-0o620-scheme1.jpg

Experimental  

Crystal data  

  • C24H23NO2

  • M r = 357.43

  • Monoclinic, Inline graphic

  • a = 14.4712 (2) Å

  • b = 9.5592 (2) Å

  • c = 29.5386 (5) Å

  • β = 98.898 (1)°

  • V = 4036.99 (12) Å3

  • Z = 8

  • Cu Kα radiation

  • μ = 0.59 mm−1

  • T = 298 K

  • 0.29 × 0.11 × 0.08 mm

Data collection  

  • Bruker SMART APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.848, T max = 0.954

  • 15700 measured reflections

  • 3574 independent reflections

  • 2344 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.069

  • wR(F 2) = 0.268

  • S = 1.10

  • 3574 reflections

  • 348 parameters

  • 73 restraints

  • H-atom parameters constrained

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400909X/lh5699sup1.cif

e-70-0o620-sup1.cif (41.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400909X/lh5699Isup2.hkl

e-70-0o620-Isup2.hkl (175.4KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400909X/lh5699Isup3.cml

CCDC reference: 998819

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C2A–C5A/C10A/C11A and C13B–C18B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C4A—H4AA⋯O2A i 0.95 2.44 3.303 (11) 149
C9B—H9BA⋯O2B ii 0.95 2.59 3.352 (11) 138
C14B—H14BCg1iii 0.95 2.85 3.708 (14) 151
C20A—H20ACg2iv 0.99 2.91 3.819 (14) 152
C19B—H19CCg2iv 0.99 2.88 3.746 (19) 146

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Acknowledgments

This research was supported by a PRGS Research Grant (No. RDU 130803).

supplementary crystallographic information

1. Comment

Electro-optical display devices require certain desirable features such as large positive dielectric anisotropy, nematic phase, low melting point, stability and lack of color (Cox & Clecak, 1976; Reddy & Tschierske, 2006; Hanasaki et al., 2011). To obtain such properties, a highly polar terminal cyano group can be incorporated to give a large dipole moment. Maximum dipole moment (90 degrees) indicates that the dipole moment is exactly parallel to the molecular short axis, which acts along the long axis of the molecule and helps to give the proper alignment for liquid crystal displays (Coates & Gray, 1976; Klingbiel et al., 1974; Takezoe & Takanishi, 2006). Here we report the synthesis and single-crystal X-ray study of an unsymmetrical naphthalene liquid crystal molecule. The shows a nematic phase after 379 K then a stable phase until an isotropic state at 411 K on a heating cycle. Upon cooling from the isotropic state, the nematic phase was reformed at 410 K, the phase is stabilized before crystallizes at 321 K.

The molecular structure of the title compound is shown in Fig 1. The whole molecule of the title compound is disordered over two positions with a refined site-occupancy ratio of 0.692 (6): 0.308 (6). For the major component, the naphthalene ring system (C2A—C11A) makes a dihedral angle of 68.6 (5)° with the benzene ring (C13A—C18A). In the minor component, the dihedral angle formed between the naphthalene ring system (C2B—C11B) and the benzene ring (C13B—C18B) is 81.6 (10)°. All the bond lengths (Allen et al., 1987) and angles are in normal ranges and compared with the closely related structures (Kuzmina et al., 2010; Blake et al., 1995; Li, 2006)

In the crystal, molecules are linked into chains propagating along the b-axis via weak C—H···O hydrogen bonds. Weak C—H···π interactions are also observed (see Table 1).

2. Experimental

A mixture of 4-hexylbenzoic acid (1.0 mmol), 2-cyano-6-hydroxy-naphthalene (1.0 mmol), dicyclohexylcarbodiimide (1.2 mmol) and catalytic quantity of N,N-dimethylaminopyridine in 5 ml of dry dichloromethane was stirred at room temperature for 1 h. Progress of the reaction was monitored by TLC (ethyl acetate: pet ether 2:8). After completion of the reaction, the reaction mass was diluted with water and extracted into dichloromethane (25 ml). The organic layer was washed with diluted acetic acid and water. The organic layer was dried over anhydrous sodium sulfate and the solvent was removed under reduced pressure. The crude product was purified by column chromatography by using ethyl acetate: petroleum ether (2:8) as eluent and the product was recrystallization from chloroform. Yield = 70% as colourless block crystals. IR(KBr): v = 2920, 2856, 2224, 1724, 1454, 1066, 902 cm-1; 1H NMR (400 MHz, CDCl3): δ = 8.11–6.98 (m, 10H, Ar—H), 2.54 (t, J = 1.37 Hz, 2H, Ar—CH2–), 1.47–1.44 (m, 8H, alkyl-CH2–), 0.91 (m, 3H, alkyl-CH3) p.p.m.; Elemental analysis calcd for C24H23NO2 (%): C 80.64, H 6.49, N 3.92; found. C 80.69, H 6.54, N 4.07.

3. Refinement

The title compound is disordered over two positions with a refined site-occupancy ratio of 0.692 (6): 0.308 (6) and the minor disordered component was refined isotropically. All H atoms were positioned geometrically [C—H = 0.95–0.99 Å] and refined using a riding model with Uiso(H) = 1.2 or 1.5 Ueq(C). A rotating group model was applied to the methyl groups. The restraints of same geometries were applied to all disordered components. Identical anisotropic displacement and distance restraint were used in the final refinement. Similarity were applied to the disordered atoms. DFIX restraints of 1.50 (1) Å were used for the long-disordered alkyl chains such as C19B—C20B, C21B—C22B, C22B—C23B, C23B—C24B and C23A—C24A distances. Same Uij parameters restraints were used for C22A/C23A and C22B/C23B atom pairs. One outlier (1 1 10) was omitted from the reflection data.

Figures

Fig. 1.

Fig. 1.

: The molecular structure of the title compound showing 30% probability displacement ellipsoids for the major component of disorder. Open bonds show the minor disordered component.

Fig. 2.

Fig. 2.

: The crystal packing of the title compound. Dashed lines represent the intermolecular hydrogen bonds. Only major disordered component is shown.

Crystal data

C24H23NO2 F(000) = 1520
Mr = 357.43 Dx = 1.176 Mg m3
Monoclinic, C2/c Cu Kα radiation, λ = 1.54178 Å
Hall symbol: -C 2yc Cell parameters from 5436 reflections
a = 14.4712 (2) Å θ = 3.0–59.5°
b = 9.5592 (2) Å µ = 0.59 mm1
c = 29.5386 (5) Å T = 298 K
β = 98.898 (1)° Block, colourless
V = 4036.99 (12) Å3 0.29 × 0.11 × 0.08 mm
Z = 8

Data collection

Bruker SMART APEXII CCD area-detector diffractometer 3574 independent reflections
Radiation source: fine-focus sealed tube 2344 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.026
φ and ω scans θmax = 67.5°, θmin = 3.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −17→17
Tmin = 0.848, Tmax = 0.954 k = −11→10
15700 measured reflections l = −35→34

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.069 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.268 H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1621P)2 + 0.4013P] where P = (Fo2 + 2Fc2)/3
3574 reflections (Δ/σ)max = 0.001
348 parameters Δρmax = 0.25 e Å3
73 restraints Δρmin = −0.22 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1A 0.4778 (8) 0.1930 (11) 0.99962 (18) 0.145 (3) 0.692 (6)
C1A 0.4583 (9) 0.1754 (13) 0.9609 (2) 0.161 (4) 0.692 (6)
C2A 0.4351 (12) 0.1379 (10) 0.9130 (2) 0.121 (5) 0.692 (6)
C3A 0.4307 (11) −0.0035 (9) 0.8995 (3) 0.125 (5) 0.692 (6)
H3AA 0.4415 −0.0758 0.9218 0.150* 0.692 (6)
C4A 0.4110 (9) −0.0350 (9) 0.8543 (3) 0.130 (4) 0.692 (6)
H4AA 0.4045 −0.1304 0.8453 0.156* 0.692 (6)
C5A 0.3996 (15) 0.0695 (7) 0.8201 (2) 0.095 (5) 0.692 (6)
C6A 0.3754 (5) 0.0381 (5) 0.77329 (15) 0.090 (2) 0.692 (6)
H6AA 0.3707 −0.0566 0.7635 0.108* 0.692 (6)
C7A 0.3590 (10) 0.1417 (10) 0.7424 (2) 0.113 (5) 0.692 (6)
C8A 0.3659 (11) 0.2835 (11) 0.7551 (3) 0.154 (5) 0.692 (6)
H8AA 0.3557 0.3550 0.7325 0.185* 0.692 (6)
C9A 0.3874 (10) 0.3163 (8) 0.8002 (3) 0.146 (5) 0.692 (6)
H9AA 0.3895 0.4117 0.8093 0.175* 0.692 (6)
C10A 0.4066 (15) 0.2110 (8) 0.8340 (2) 0.109 (4) 0.692 (6)
C11A 0.4239 (8) 0.2407 (9) 0.8809 (3) 0.137 (4) 0.692 (6)
H11A 0.4280 0.3356 0.8906 0.164* 0.692 (6)
O1A 0.3432 (3) 0.1110 (9) 0.69588 (13) 0.116 (3) 0.692 (6)
O2A 0.1939 (3) 0.1789 (6) 0.69048 (16) 0.1168 (13) 0.692 (6)
C12A 0.2548 (5) 0.1298 (13) 0.6719 (2) 0.122 (4) 0.692 (6)
C13A 0.2471 (4) 0.0879 (13) 0.62349 (17) 0.099 (2) 0.692 (6)
C14A 0.3195 (3) 0.0298 (8) 0.60548 (14) 0.1111 (15) 0.692 (6)
H14A 0.3777 0.0133 0.6245 0.133* 0.692 (6)
C15A 0.3080 (3) −0.0047 (8) 0.55975 (13) 0.1260 (17) 0.692 (6)
H15A 0.3590 −0.0449 0.5477 0.151* 0.692 (6)
C16A 0.2256 (3) 0.0168 (8) 0.53108 (13) 0.1217 (16) 0.692 (6)
C17A 0.1539 (5) 0.0786 (19) 0.5497 (2) 0.134 (4) 0.692 (6)
H17A 0.0962 0.0977 0.5306 0.161* 0.692 (6)
C18A 0.1643 (5) 0.1128 (14) 0.5950 (2) 0.137 (4) 0.692 (6)
H18A 0.1137 0.1544 0.6070 0.164* 0.692 (6)
C19A 0.2169 (5) −0.0254 (9) 0.48135 (16) 0.171 (3) 0.692 (6)
H19A 0.2802 −0.0236 0.4726 0.206* 0.692 (6)
H19B 0.1948 −0.1235 0.4787 0.206* 0.692 (6)
C20A 0.1562 (6) 0.0569 (8) 0.44850 (17) 0.198 (3) 0.692 (6)
H20A 0.1738 0.1563 0.4536 0.237* 0.692 (6)
H20B 0.0916 0.0465 0.4553 0.237* 0.692 (6)
C21A 0.1545 (5) 0.0258 (10) 0.39913 (17) 0.181 (3) 0.692 (6)
H21A 0.1073 0.0879 0.3815 0.218* 0.692 (6)
H21B 0.2161 0.0524 0.3912 0.218* 0.692 (6)
C22A 0.1342 (9) −0.1186 (11) 0.3829 (2) 0.250 (4) 0.692 (6)
H22A 0.0863 −0.1630 0.3987 0.300* 0.692 (6)
H22B 0.1914 −0.1770 0.3872 0.300* 0.692 (6)
C23A 0.0965 (9) −0.0943 (9) 0.3306 (2) 0.250 (4) 0.692 (6)
H23A 0.0277 −0.0830 0.3250 0.300* 0.692 (6)
H23B 0.1261 −0.0117 0.3185 0.300* 0.692 (6)
C24A 0.1261 (7) −0.2275 (10) 0.3103 (3) 0.231 (4) 0.692 (6)
H24A 0.1177 −0.2188 0.2768 0.347* 0.692 (6)
H24B 0.0879 −0.3050 0.3187 0.347* 0.692 (6)
H24C 0.1921 −0.2458 0.3220 0.347* 0.692 (6)
N1B 0.459 (2) 0.187 (4) 1.0011 (6) 0.194 (12)* 0.308 (6)
C1B 0.4572 (10) 0.1627 (15) 0.9629 (3) 0.087 (3)* 0.308 (6)
C2B 0.441 (2) 0.1329 (12) 0.9143 (3) 0.088 (6)* 0.308 (6)
C3B 0.4330 (17) −0.0078 (13) 0.8999 (4) 0.090 (7)* 0.308 (6)
H3BA 0.4409 −0.0813 0.9218 0.108* 0.308 (6)
C4B 0.4144 (10) −0.0374 (12) 0.8545 (3) 0.077 (4)* 0.308 (6)
H4BA 0.4156 −0.1316 0.8444 0.092* 0.308 (6)
C5B 0.393 (4) 0.0715 (14) 0.8222 (4) 0.095 (12)* 0.308 (6)
C6B 0.379 (2) 0.0423 (19) 0.7750 (4) 0.149 (11)* 0.308 (6)
H6BA 0.3777 −0.0518 0.7647 0.179* 0.308 (6)
C7B 0.366 (2) 0.1472 (15) 0.7444 (4) 0.099 (9)* 0.308 (6)
C8B 0.3689 (13) 0.2883 (13) 0.7582 (4) 0.094 (5)* 0.308 (6)
H8BA 0.3570 0.3608 0.7360 0.112* 0.308 (6)
C9B 0.3894 (12) 0.3195 (13) 0.8036 (4) 0.093 (5)* 0.308 (6)
H9BA 0.3970 0.4144 0.8129 0.112* 0.308 (6)
C10B 0.399 (3) 0.2120 (13) 0.8370 (4) 0.088 (6)* 0.308 (6)
C11B 0.4239 (11) 0.2405 (12) 0.8838 (3) 0.080 (4)* 0.308 (6)
H11B 0.4289 0.3346 0.8943 0.096* 0.308 (6)
O1B 0.3470 (9) 0.116 (2) 0.6980 (4) 0.148 (9)* 0.308 (6)
O2B 0.1958 (7) 0.1460 (11) 0.6993 (3) 0.103 (3)* 0.308 (6)
C12B 0.2563 (6) 0.1302 (17) 0.6760 (3) 0.068 (3)* 0.308 (6)
C13B 0.2474 (8) 0.111 (3) 0.6263 (3) 0.085 (5)* 0.308 (6)
C14B 0.3233 (8) 0.0828 (13) 0.6055 (3) 0.110 (5)* 0.308 (6)
H14B 0.3838 0.0751 0.6231 0.132* 0.308 (6)
C15B 0.3109 (8) 0.0656 (17) 0.5587 (4) 0.144 (6)* 0.308 (6)
H15B 0.3636 0.0436 0.5444 0.173* 0.308 (6)
C16B 0.2255 (8) 0.0793 (15) 0.5321 (3) 0.122 (5)* 0.308 (6)
C17B 0.1482 (10) 0.092 (4) 0.5540 (5) 0.131 (9)* 0.308 (6)
H17B 0.0871 0.0862 0.5369 0.157* 0.308 (6)
C18B 0.1600 (7) 0.1134 (19) 0.6002 (4) 0.084 (4)* 0.308 (6)
H18B 0.1068 0.1302 0.6147 0.101* 0.308 (6)
C19B 0.2193 (12) 0.0783 (14) 0.4804 (4) 0.176 (6)* 0.308 (6)
H19C 0.1846 0.1624 0.4678 0.211* 0.308 (6)
H19D 0.2832 0.0841 0.4726 0.211* 0.308 (6)
C20B 0.1719 (10) −0.0493 (14) 0.4583 (4) 0.150 (4)* 0.308 (6)
H20C 0.1042 −0.0435 0.4599 0.180* 0.308 (6)
H20D 0.1969 −0.1329 0.4758 0.180* 0.308 (6)
C21B 0.1845 (9) −0.068 (2) 0.4092 (4) 0.197 (7)* 0.308 (6)
H21C 0.2172 0.0170 0.4005 0.237* 0.308 (6)
H21D 0.2280 −0.1470 0.4083 0.237* 0.308 (6)
C22B 0.1034 (8) −0.0921 (19) 0.3719 (4) 0.169 (5)* 0.308 (6)
H22C 0.0646 −0.0066 0.3665 0.202* 0.308 (6)
H22D 0.0638 −0.1692 0.3804 0.202* 0.308 (6)
C23B 0.1438 (8) −0.130 (2) 0.3296 (4) 0.169 (5)* 0.308 (6)
H23D 0.1818 −0.0516 0.3204 0.202* 0.308 (6)
H23E 0.1836 −0.2140 0.3349 0.202* 0.308 (6)
C24B 0.0605 (9) −0.157 (2) 0.2937 (4) 0.180 (6)* 0.308 (6)
H24D 0.0815 −0.1898 0.2656 0.270* 0.308 (6)
H24G 0.0247 −0.0701 0.2873 0.270* 0.308 (6)
H24E 0.0208 −0.2281 0.3048 0.270* 0.308 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1A 0.162 (5) 0.174 (5) 0.093 (3) −0.048 (4) 0.003 (2) −0.042 (2)
C1A 0.165 (6) 0.177 (8) 0.137 (5) −0.058 (5) 0.011 (4) −0.031 (4)
C2A 0.112 (6) 0.146 (7) 0.104 (4) −0.031 (3) 0.011 (2) −0.025 (3)
C3A 0.132 (7) 0.131 (6) 0.105 (4) −0.023 (3) 0.000 (2) −0.005 (2)
C4A 0.143 (6) 0.111 (4) 0.131 (5) −0.009 (3) 0.004 (3) −0.014 (2)
C5A 0.080 (4) 0.103 (6) 0.100 (6) −0.0027 (15) 0.011 (2) −0.0106 (19)
C6A 0.082 (2) 0.097 (3) 0.091 (3) 0.0071 (14) 0.0105 (14) −0.0054 (15)
C7A 0.095 (5) 0.146 (8) 0.098 (5) 0.012 (3) 0.0154 (19) −0.001 (2)
C8A 0.161 (7) 0.145 (6) 0.155 (6) −0.005 (3) 0.018 (4) 0.038 (4)
C9A 0.173 (7) 0.106 (4) 0.156 (7) −0.017 (3) 0.015 (4) 0.008 (3)
C10A 0.097 (6) 0.106 (5) 0.125 (5) −0.015 (2) 0.019 (3) −0.011 (2)
C11A 0.140 (5) 0.119 (4) 0.149 (6) −0.038 (3) 0.016 (3) −0.036 (3)
O1A 0.0883 (19) 0.176 (5) 0.084 (2) 0.0302 (17) 0.0133 (10) 0.0084 (14)
O2A 0.110 (2) 0.135 (3) 0.108 (2) 0.0322 (19) 0.0273 (16) 0.014 (2)
C12A 0.113 (4) 0.118 (4) 0.140 (6) 0.019 (2) 0.034 (3) 0.027 (3)
C13A 0.104 (3) 0.091 (5) 0.103 (4) 0.017 (2) 0.0192 (19) 0.018 (2)
C14A 0.111 (3) 0.125 (4) 0.099 (3) 0.027 (3) 0.0207 (18) 0.013 (2)
C15A 0.127 (3) 0.153 (5) 0.100 (3) 0.041 (3) 0.022 (2) 0.008 (2)
C16A 0.142 (4) 0.122 (4) 0.100 (3) 0.028 (3) 0.015 (2) 0.003 (2)
C17A 0.126 (5) 0.152 (7) 0.114 (4) 0.033 (3) −0.018 (3) 0.002 (3)
C18A 0.125 (4) 0.144 (5) 0.140 (6) 0.034 (3) 0.018 (3) 0.000 (4)
C19A 0.177 (5) 0.216 (8) 0.113 (4) 0.050 (5) −0.004 (3) −0.025 (4)
C20A 0.286 (9) 0.192 (7) 0.111 (4) 0.000 (6) 0.015 (4) 0.012 (4)
C21A 0.174 (5) 0.251 (9) 0.115 (4) 0.001 (6) 0.011 (3) 0.006 (4)
C22A 0.297 (9) 0.307 (10) 0.127 (4) 0.007 (7) −0.028 (4) 0.004 (4)
C23A 0.297 (9) 0.307 (10) 0.127 (4) 0.007 (7) −0.028 (4) 0.004 (4)
C24A 0.258 (9) 0.285 (11) 0.156 (6) 0.028 (8) 0.048 (6) −0.035 (6)

Geometric parameters (Å, º)

N1A—C1A 1.146 (6) N1B—C1B 1.148 (9)
C1A—C2A 1.449 (5) C1B—C2B 1.446 (7)
C2A—C11A 1.358 (6) C2B—C11B 1.364 (7)
C2A—C3A 1.408 (6) C2B—C3B 1.411 (8)
C3A—C4A 1.356 (5) C3B—C4B 1.356 (7)
C3A—H3AA 0.9500 C3B—H3BA 0.9500
C4A—C5A 1.411 (6) C4B—C5B 1.415 (8)
C4A—H4AA 0.9500 C4B—H4BA 0.9500
C5A—C6A 1.406 (5) C5B—C6B 1.405 (8)
C5A—C10A 1.413 (5) C5B—C10B 1.412 (7)
C6A—C7A 1.343 (5) C6B—C7B 1.342 (8)
C6A—H6AA 0.9500 C6B—H6BA 0.9500
C7A—O1A 1.389 (5) C7B—O1B 1.388 (8)
C7A—C8A 1.406 (6) C7B—C8B 1.407 (8)
C8A—C9A 1.358 (6) C8B—C9B 1.361 (8)
C8A—H8AA 0.9500 C8B—H8BA 0.9500
C9A—C10A 1.414 (6) C9B—C10B 1.417 (8)
C9A—H9AA 0.9500 C9B—H9BA 0.9500
C10A—C11A 1.397 (6) C10B—C11B 1.399 (8)
C11A—H11A 0.9500 C11B—H11B 0.9500
O1A—C12A 1.375 (5) O1B—C12B 1.377 (8)
O2A—C12A 1.204 (5) O2B—C12B 1.204 (7)
C12A—C13A 1.473 (6) C12B—C13B 1.465 (8)
C13A—C14A 1.365 (5) C13B—C14B 1.366 (8)
C13A—C18A 1.374 (5) C13B—C18B 1.375 (7)
C14A—C15A 1.375 (5) C14B—C15B 1.377 (8)
C14A—H14A 0.9500 C14B—H14B 0.9500
C15A—C16A 1.367 (5) C15B—C16B 1.365 (9)
C15A—H15A 0.9500 C15B—H15B 0.9500
C16A—C17A 1.380 (7) C16B—C17B 1.382 (10)
C16A—C19A 1.510 (6) C16B—C19B 1.513 (9)
C17A—C18A 1.363 (7) C17B—C18B 1.366 (9)
C17A—H17A 0.9500 C17B—H17B 0.9500
C18A—H18A 0.9500 C18B—H18B 0.9500
C19A—C20A 1.438 (7) C19B—C20B 1.4992 (11)
C19A—H19A 0.9900 C19B—H19C 0.9900
C19A—H19B 0.9900 C19B—H19D 0.9900
C20A—C21A 1.485 (6) C20B—C21B 1.4998 (11)
C20A—H20A 0.9900 C20B—H20C 0.9900
C20A—H20B 0.9900 C20B—H20D 0.9900
C21A—C22A 1.476 (8) C21B—C22B 1.4990 (11)
C21A—H21A 0.9900 C21B—H21C 0.9900
C21A—H21B 0.9900 C21B—H21D 0.9900
C22A—C23A 1.574 (7) C22B—C23B 1.5011 (11)
C22A—H22A 0.9900 C22B—H22C 0.9900
C22A—H22B 0.9900 C22B—H22D 0.9900
C23A—C24A 1.4984 (11) C23B—C24B 1.4995 (11)
C23A—H23A 0.9900 C23B—H23D 0.9900
C23A—H23B 0.9900 C23B—H23E 0.9900
C24A—H24A 0.9800 C24B—H24D 0.9800
C24A—H24B 0.9800 C24B—H24G 0.9800
C24A—H24C 0.9800 C24B—H24E 0.9800
N1A—C1A—C2A 174.0 (11) C3B—C2B—C1B 118.7 (8)
C11A—C2A—C3A 120.1 (5) C4B—C3B—C2B 119.4 (8)
C11A—C2A—C1A 119.2 (6) C4B—C3B—H3BA 120.3
C3A—C2A—C1A 120.5 (6) C2B—C3B—H3BA 120.3
C4A—C3A—C2A 119.1 (5) C3B—C4B—C5B 120.3 (8)
C4A—C3A—H3AA 120.5 C3B—C4B—H4BA 119.9
C2A—C3A—H3AA 120.5 C5B—C4B—H4BA 119.9
C3A—C4A—C5A 122.0 (6) C6B—C5B—C10B 119.3 (8)
C3A—C4A—H4AA 119.0 C6B—C5B—C4B 120.6 (10)
C5A—C4A—H4AA 119.0 C10B—C5B—C4B 119.5 (8)
C6A—C5A—C4A 122.4 (5) C7B—C6B—C5B 120.2 (10)
C6A—C5A—C10A 119.1 (4) C7B—C6B—H6BA 119.9
C4A—C5A—C10A 118.4 (5) C5B—C6B—H6BA 119.9
C7A—C6A—C5A 120.1 (4) C6B—C7B—O1B 119.5 (10)
C7A—C6A—H6AA 119.9 C6B—C7B—C8B 121.8 (9)
C5A—C6A—H6AA 119.9 O1B—C7B—C8B 118.8 (9)
C6A—C7A—O1A 120.0 (6) C9B—C8B—C7B 119.1 (8)
C6A—C7A—C8A 122.2 (5) C9B—C8B—H8BA 120.4
O1A—C7A—C8A 117.5 (5) C7B—C8B—H8BA 120.4
C9A—C8A—C7A 118.7 (6) C8B—C9B—C10B 120.7 (8)
C9A—C8A—H8AA 120.6 C8B—C9B—H9BA 119.6
C7A—C8A—H8AA 120.6 C10B—C9B—H9BA 119.6
C8A—C9A—C10A 121.2 (6) C11B—C10B—C5B 119.1 (7)
C8A—C9A—H9AA 119.4 C11B—C10B—C9B 122.0 (9)
C10A—C9A—H9AA 119.4 C5B—C10B—C9B 118.6 (7)
C11A—C10A—C5A 118.4 (5) C2B—C11B—C10B 119.9 (8)
C11A—C10A—C9A 122.7 (6) C2B—C11B—H11B 120.1
C5A—C10A—C9A 118.6 (5) C10B—C11B—H11B 120.1
C2A—C11A—C10A 121.9 (5) C12B—O1B—C7B 118.1 (13)
C2A—C11A—H11A 119.0 O2B—C12B—O1B 117.8 (9)
C10A—C11A—H11A 119.0 O2B—C12B—C13B 129.0 (8)
C12A—O1A—C7A 118.6 (6) O1B—C12B—C13B 113.0 (7)
O2A—C12A—O1A 120.4 (5) C14B—C13B—C18B 119.0 (7)
O2A—C12A—C13A 126.7 (5) C14B—C13B—C12B 121.6 (7)
O1A—C12A—C13A 112.9 (5) C18B—C13B—C12B 119.3 (8)
C14A—C13A—C18A 118.7 (5) C13B—C14B—C15B 119.2 (9)
C14A—C13A—C12A 122.8 (4) C13B—C14B—H14B 120.4
C18A—C13A—C12A 118.4 (5) C15B—C14B—H14B 120.4
C13A—C14A—C15A 119.8 (4) C16B—C15B—C14B 122.1 (9)
C13A—C14A—H14A 120.1 C16B—C15B—H15B 118.9
C15A—C14A—H14A 120.1 C14B—C15B—H15B 118.9
C16A—C15A—C14A 122.3 (4) C15B—C16B—C17B 117.7 (8)
C16A—C15A—H15A 118.8 C15B—C16B—C19B 119.1 (9)
C14A—C15A—H15A 118.8 C17B—C16B—C19B 123.1 (9)
C15A—C16A—C17A 117.1 (4) C18B—C17B—C16B 119.8 (10)
C15A—C16A—C19A 119.8 (4) C18B—C17B—H17B 120.1
C17A—C16A—C19A 123.1 (4) C16B—C17B—H17B 120.1
C18A—C17A—C16A 121.1 (5) C17B—C18B—C13B 121.3 (9)
C18A—C17A—H17A 119.4 C17B—C18B—H18B 119.4
C16A—C17A—H17A 119.4 C13B—C18B—H18B 119.4
C17A—C18A—C13A 120.9 (6) C20B—C19B—C16B 113.4 (9)
C17A—C18A—H18A 119.5 C20B—C19B—H19C 108.9
C13A—C18A—H18A 119.5 C16B—C19B—H19C 108.9
C20A—C19A—C16A 117.4 (5) C20B—C19B—H19D 108.9
C20A—C19A—H19A 107.9 C16B—C19B—H19D 108.9
C16A—C19A—H19A 107.9 H19C—C19B—H19D 107.7
C20A—C19A—H19B 107.9 C19B—C20B—C21B 113.6 (9)
C16A—C19A—H19B 107.9 C19B—C20B—H20C 108.8
H19A—C19A—H19B 107.2 C21B—C20B—H20C 108.8
C19A—C20A—C21A 118.0 (6) C19B—C20B—H20D 108.8
C19A—C20A—H20A 107.8 C21B—C20B—H20D 108.8
C21A—C20A—H20A 107.8 H20C—C20B—H20D 107.7
C19A—C20A—H20B 107.8 C22B—C21B—C20B 122.1 (10)
C21A—C20A—H20B 107.8 C22B—C21B—H21C 106.8
H20A—C20A—H20B 107.2 C20B—C21B—H21C 106.8
C22A—C21A—C20A 118.6 (6) C22B—C21B—H21D 106.8
C22A—C21A—H21A 107.7 C20B—C21B—H21D 106.8
C20A—C21A—H21A 107.7 H21C—C21B—H21D 106.7
C22A—C21A—H21B 107.7 C21B—C22B—C23B 106.7 (8)
C20A—C21A—H21B 107.7 C21B—C22B—H22C 110.4
H21A—C21A—H21B 107.1 C23B—C22B—H22C 110.4
C21A—C22A—C23A 101.6 (6) C21B—C22B—H22D 110.4
C21A—C22A—H22A 111.4 C23B—C22B—H22D 110.4
C23A—C22A—H22A 111.4 H22C—C22B—H22D 108.6
C21A—C22A—H22B 111.4 C24B—C23B—C22B 104.8 (8)
C23A—C22A—H22B 111.4 C24B—C23B—H23D 110.8
H22A—C22A—H22B 109.3 C22B—C23B—H23D 110.8
C24A—C23A—C22A 101.0 (6) C24B—C23B—H23E 110.8
C24A—C23A—H23A 111.6 C22B—C23B—H23E 110.8
C22A—C23A—H23A 111.6 H23D—C23B—H23E 108.9
C24A—C23A—H23B 111.6 C23B—C24B—H24D 109.5
C22A—C23A—H23B 111.6 C23B—C24B—H24G 109.5
H23A—C23A—H23B 109.4 H24D—C24B—H24G 109.5
N1B—C1B—C2B 172 (2) C23B—C24B—H24E 109.5
C11B—C2B—C3B 121.5 (8) H24D—C24B—H24E 109.5
C11B—C2B—C1B 119.5 (8) H24G—C24B—H24E 109.5
C11A—C2A—C3A—C4A −3 (2) C11B—C2B—C3B—C4B 4 (4)
C1A—C2A—C3A—C4A −178.5 (13) C1B—C2B—C3B—C4B 178 (2)
C2A—C3A—C4A—C5A 3 (2) C2B—C3B—C4B—C5B −7 (4)
C3A—C4A—C5A—C6A −177.4 (15) C3B—C4B—C5B—C6B 177 (3)
C3A—C4A—C5A—C10A −2 (3) C3B—C4B—C5B—C10B 6 (6)
C4A—C5A—C6A—C7A 175.3 (16) C10B—C5B—C6B—C7B −4 (6)
C10A—C5A—C6A—C7A 0 (3) C4B—C5B—C6B—C7B −175 (3)
C5A—C6A—C7A—O1A 174.3 (13) C5B—C6B—C7B—O1B −177 (3)
C5A—C6A—C7A—C8A 1 (2) C5B—C6B—C7B—C8B 2 (5)
C6A—C7A—C8A—C9A −2 (2) C6B—C7B—C8B—C9B 3 (4)
O1A—C7A—C8A—C9A −175.7 (12) O1B—C7B—C8B—C9B −178.5 (19)
C7A—C8A—C9A—C10A 3 (2) C7B—C8B—C9B—C10B −5 (4)
C6A—C5A—C10A—C11A 175.4 (16) C6B—C5B—C10B—C11B −173 (4)
C4A—C5A—C10A—C11A 0 (3) C4B—C5B—C10B—C11B −2 (7)
C6A—C5A—C10A—C9A 1 (3) C6B—C5B—C10B—C9B 1 (7)
C4A—C5A—C10A—C9A −174.6 (16) C4B—C5B—C10B—C9B 172 (3)
C8A—C9A—C10A—C11A −176.5 (16) C8B—C9B—C10B—C11B 178 (3)
C8A—C9A—C10A—C5A −2 (3) C8B—C9B—C10B—C5B 4 (5)
C3A—C2A—C11A—C10A 1 (3) C3B—C2B—C11B—C10B −1 (4)
C1A—C2A—C11A—C10A 176.5 (15) C1B—C2B—C11B—C10B −174 (3)
C5A—C10A—C11A—C2A 1 (3) C5B—C10B—C11B—C2B 0 (5)
C9A—C10A—C11A—C2A 174.8 (16) C9B—C10B—C11B—C2B −174 (3)
C6A—C7A—O1A—C12A 110.0 (13) C6B—C7B—O1B—C12B 103 (3)
C8A—C7A—O1A—C12A −76.0 (16) C8B—C7B—O1B—C12B −75 (3)
C7A—O1A—C12A—O2A 3.8 (16) C7B—O1B—C12B—O2B −12 (2)
C7A—O1A—C12A—C13A −177.7 (9) C7B—O1B—C12B—C13B 173.2 (17)
O2A—C12A—C13A—C14A −178.4 (11) O2B—C12B—C13B—C14B −174.5 (18)
O1A—C12A—C13A—C14A 3.2 (17) O1B—C12B—C13B—C14B 0 (3)
O2A—C12A—C13A—C18A 4 (2) O2B—C12B—C13B—C18B 2 (4)
O1A—C12A—C13A—C18A −174.6 (11) O1B—C12B—C13B—C18B 176 (2)
C18A—C13A—C14A—C15A −1.2 (15) C18B—C13B—C14B—C15B 4 (3)
C12A—C13A—C14A—C15A −178.9 (10) C12B—C13B—C14B—C15B 180.0 (18)
C13A—C14A—C15A—C16A −0.1 (12) C13B—C14B—C15B—C16B 2 (2)
C14A—C15A—C16A—C17A 1.6 (13) C14B—C15B—C16B—C17B −9 (3)
C14A—C15A—C16A—C19A −179.1 (7) C14B—C15B—C16B—C19B 171.8 (12)
C15A—C16A—C17A—C18A −2 (2) C15B—C16B—C17B—C18B 10 (4)
C19A—C16A—C17A—C18A 178.8 (12) C19B—C16B—C17B—C18B −170 (2)
C16A—C17A—C18A—C13A 1 (2) C16B—C17B—C18B—C13B −5 (5)
C14A—C13A—C18A—C17A 1 (2) C14B—C13B—C18B—C17B −2 (4)
C12A—C13A—C18A—C17A 178.7 (14) C12B—C13B—C18B—C17B −178 (3)
C15A—C16A—C19A—C20A −148.2 (8) C15B—C16B—C19B—C20B 111.4 (16)
C17A—C16A—C19A—C20A 31.1 (15) C17B—C16B—C19B—C20B −68 (3)
C16A—C19A—C20A—C21A 173.8 (6) C16B—C19B—C20B—C21B −166.8 (12)
C19A—C20A—C21A—C22A 54.9 (12) C19B—C20B—C21B—C22B −129.0 (19)
C20A—C21A—C22A—C23A 156.5 (8) C20B—C21B—C22B—C23B −170.5 (17)
C21A—C22A—C23A—C24A 149.9 (9) C21B—C22B—C23B—C24B 178.6 (14)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C2A–C5A/C10A/C11A and C13B–C18B rings, respectively.

D—H···A D—H H···A D···A D—H···A
C4A—H4AA···O2Ai 0.95 2.44 3.303 (11) 149
C9B—H9BA···O2Bii 0.95 2.59 3.352 (11) 138
C14B—H14B···Cg1iii 0.95 2.85 3.708 (14) 151
C20A—H20A···Cg2iv 0.99 2.91 3.819 (14) 152
C19B—H19C···Cg2iv 0.99 2.88 3.746 (19) 146

Symmetry codes: (i) −x+1/2, y−1/2, −z+3/2; (ii) −x+1/2, y+1/2, −z+3/2; (iii) −x+1, y, −z+3/2; (iv) −x+1/2, −y+1/2, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5699).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Blake, A. J., Fallis, I. A., Parsons, S., Schröder, M. & Bruce, D. W. (1995). Acta Cryst. C51, 2666–2668.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Coates, D. & Gray, G. W. (1976). Mol. Cryst. Liq. Cryst. 37, 249–262.
  5. Cox, R. J. & Clecak, N. J. (1976). Mol. Cryst. Liq. Cryst. 37, 263–267.
  6. Hanasaki, T., Kamei, Y., Mandai, A., Uno, K. & Kaneko, K. (2011). Liq. Cryst. 38, 785–792.
  7. Klingbiel, R. T., Genova, D. J., Crisewell, T. R. & Vanmeter, J. P. (1974). J. Am. Chem. Soc, 96, 7625–7631.
  8. Kuzmina, L. G., Pestov, S. M., Kochetov, A. N., Churakov, A. V. & Lermontova, E. K. (2010). Crystallogr. Rep. 55, 786–792.
  9. Li, Y.-H. (2006). Acta Cryst. E62, o5935–o5936.
  10. Reddy, R. A. & Tschierske, C. (2006). J. Mater. Chem. 16, 907–961.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Takezoe, H. & Takanishi, Y. (2006). Jpn. J. Appl. Phys. 45, 597–625.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400909X/lh5699sup1.cif

e-70-0o620-sup1.cif (41.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400909X/lh5699Isup2.hkl

e-70-0o620-Isup2.hkl (175.4KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400909X/lh5699Isup3.cml

CCDC reference: 998819

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES