Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 12;70(Pt 5):m176–m177. doi: 10.1107/S1600536814007818

Bis{μ-cis-1,3-bis­[(di-tert-butyl­phosphan­yl)­oxy]cyclo­hexane-κ2 P:P′}bis­[carbonylnickel(0)] including an unknown solvent molecule

Klara J Jonasson a, Ola F Wendt a,*
PMCID: PMC4011252  PMID: 24860309

Abstract

The title compound, [Ni2(C22H46P2O2)2(CO)2], is located about a centre of inversion with the Ni0 atom within a distorted trigonal–planar geometry. The cyclo­hexyl rings are in the usual chair conformation with the 1,3-cis substituents equatorially oriented. No specific inter­molecular inter­actions are noted in the crystal packing. A region of disordered electron density, most probably a disordered deuterobenzene solvent molecule, was treated using the SQUEEZE routine in PLATON [Spek (2009). Acta Cryst. D65, 148–155]. Its formula mass and unit-cell characteristics were not taken into account during refinement.

Related literature  

For similar 16-atom macrocyclic dimers with NiII, see: Johnson & Wendt (2011); Castonguay et al. (2008); Pandarus et al. (2008). For 16-atom macrocyclic dimers of PdII and PtII with cis-1,3-bis-(di-alkyl­phosphinito)cyclo­hexane ligands, see: Sjövall et al. (2001) and Olsson et al. (2007), respectively. For other examples of Ni0 atoms adopting a close to trigonal–planar geometry, see: Rosenthal et al. (1990); Maciejewski et al. (2004); Brun et al. (2013). For an example of a carbon monoxide-induced reductive elimination from a PNP pincer-supported NiII hydride complex to form a tetra­hedral Ni0 dicarbonyl species (PNP = [N(2-PR 2-C6H3)2]), see: Liang et al. (2012).graphic file with name e-70-0m176-scheme1.jpg

Experimental  

Crystal data  

  • [Ni2(C22H46O2P2)2(CO)2]

  • M r = 982.50

  • Monoclinic, Inline graphic

  • a = 31.7851 (9) Å

  • b = 8.5449 (2) Å

  • c = 21.3311 (5) Å

  • β = 90.995 (2)°

  • V = 5792.7 (3) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.80 mm−1

  • T = 120 K

  • 0.20 × 0.15 × 0.05 mm

Data collection  

  • Agilent Xcalibur Sapphire3 diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.883, T max = 1.000

  • 27324 measured reflections

  • 6958 independent reflections

  • 4948 reflections with I > 2σ(I)

  • R int = 0.073

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.125

  • S = 1.09

  • 6958 reflections

  • 263 parameters

  • H-atom parameters constrained

  • Δρmax = 0.61 e Å−3

  • Δρmin = −0.46 e Å−3

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: CrystalMaker (CrystalMaker, 2001); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007818/tk5304sup1.cif

e-70-0m176-sup1.cif (31.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007818/tk5304Isup2.hkl

e-70-0m176-Isup2.hkl (340.6KB, hkl)

CCDC reference: 996025

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

Financial support from the Swedish Research Council and the Knut and Alice Wallenberg Foundation is gratefully acknowledged.

supplementary crystallographic information

1. Chemical context

2. Structural commentary

The title compound is formed through a carbon monoxide induced dimerization of a previously synthesized POCOP pincer NiII hydride complex. The course of the reaction is likely to proceed via a reductive elimination of a C—H bond between the metallated carbon and the hydride ligand. In the absence of carbon monoxide the POCOP pincer NiII hydride complex is stable towards reductive elimination in solution, even at 80 °C and upon addition of 1 eq. di­phenyl­acetyl­ene. Tricoordinate nickel(0) species are coordinately unsaturated, and the steric bulk of the tert-butyl substituents on the phospho­rus atoms is likely to have a crucial stabilizing impact on the title compound. It decomposes over a period of hours upon exposure to air.

The title compound has a low solubility in C6D6 and attempts to obtain 1H– and 13C-NMR spectra has been unsatisfactory. Dissolving the red crystals of the title compound in CDCl3 results in a yellow/green solution and decomposition to several compounds, as indicated by 31P-NMR spectroscopy; none was successfully isolated or characterized.

3. Supra­molecular features

4. Database survey

5. Synthesis and crystallization

A C6D6 solution of the compound trans-[NiH{cis-1,3-Bis-(di-tert-butyl­phosphinito) cyclo­hexane}] (10.0 mg, 0.021 mmol) was degassed with repeated freeze-pump-thaw cycles, before addition of CO (3 atm, 0.2 mmol, 10 eq.). Upon standing at room temperature the solution turned gradually darker, and within 48 h deep-red crystals of bis­[µ-[cis-1,3-bis­[(di-tert-butyl)­phosphinito]cyclo­hexane]-κ2-P,P']- bis­[carbonyl­nickel(0)] were formed. These were used directly in the X-ray diffraction experiment, but were dried in high-vacuum prior to the elemental analysis. Yield: 8.7 mg (82%). 31P{1H} NMR: (202.3 MHz, C6D6) δ: 177.8 (s). Anal. Calcd for C46H92Ni2O6P4 (982.52): C 56.23, H 9.44. Found: C 56.02, H 9.47.

6. Refinement

The H atoms were positioned geometrically and treated as riding on their parent atoms with C—H distances of 0.96–0.98 Å, and with Uiso(H) = 1.2–1.5 Ueq. The asymmetric unit contains half a molecule of the title complex and half a molecule of benzene but this could not be modelled successfully. Solvent contributions were therefore removed from the diffraction data with PLATON using the SQUEEZE procedure (Spek, 2009). SQUEEZE estimated the electron count in the void volume of 680 Å3 to be 140 which is in reasonable agreement with a total number of four benzene molecules in the unit cell.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the centrosymmetric title compound with atom labels and 30% probability displacement ellipsoids. Unlabelled atoms are related by the symmetry operation: 3/2-x, 1/2-y, -z. H-atoms are omitted for clarity.

Crystal data

[Ni2(C22H46O2P2)2(CO)2] F(000) = 2128
Mr = 982.50 Dx = 1.127 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2yc Cell parameters from 6436 reflections
a = 31.7851 (9) Å θ = 2.5–29.1°
b = 8.5449 (2) Å µ = 0.80 mm1
c = 21.3311 (5) Å T = 120 K
β = 90.995 (2)° Plates, red
V = 5792.7 (3) Å3 0.2 × 0.15 × 0.05 mm
Z = 4

Data collection

Agilent Xcalibur Sapphire3 diffractometer 6958 independent reflections
Radiation source: Enhance (Mo) X-ray Source 4948 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.073
Detector resolution: 16.1829 pixels mm-1 θmax = 29.1°, θmin = 2.5°
ω scans h = −42→35
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −11→11
Tmin = 0.883, Tmax = 1.000 l = −26→26
27324 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125 H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.050P)2] where P = (Fo2 + 2Fc2)/3
6958 reflections (Δ/σ)max = 0.001
263 parameters Δρmax = 0.61 e Å3
0 restraints Δρmin = −0.46 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Ni1 0.882994 (11) 0.29002 (4) 0.082823 (15) 0.01812 (11)
P1 0.83832 (2) 0.33932 (7) 0.15811 (3) 0.01714 (16)
O1 0.78777 (6) 0.29472 (19) 0.16116 (8) 0.0207 (4)
C1 0.78065 (8) 0.2143 (3) −0.11259 (12) 0.0203 (6)
H1A 0.7814 0.1012 −0.1089 0.024*
H1B 0.7917 0.2423 −0.1532 0.024*
P2 0.88701 (2) 0.22270 (7) −0.01654 (3) 0.01594 (15)
O2 0.85052 (6) 0.2342 (2) −0.07197 (8) 0.0218 (4)
C2 0.73525 (8) 0.2701 (3) −0.10868 (12) 0.0196 (6)
H2 0.7231 0.2309 −0.0698 0.023*
O3 0.96746 (7) 0.3500 (3) 0.13009 (11) 0.0510 (6)
C3 0.73284 (9) 0.4468 (3) −0.10912 (13) 0.0264 (6)
H3A 0.7038 0.4791 −0.1042 0.032*
H3B 0.7423 0.4857 −0.1492 0.032*
C4 0.75974 (9) 0.5172 (3) −0.05680 (14) 0.0280 (7)
H4A 0.7487 0.4860 −0.0166 0.034*
H4B 0.7587 0.6304 −0.0594 0.034*
C5 0.80545 (9) 0.4621 (3) −0.06177 (13) 0.0249 (6)
H5A 0.8172 0.5017 −0.1003 0.030*
H5B 0.8219 0.5041 −0.0269 0.030*
C6 0.80822 (8) 0.2861 (3) −0.06116 (12) 0.0194 (6)
H6 0.7991 0.2472 −0.0204 0.023*
C7 0.93363 (11) 0.3218 (3) 0.11184 (14) 0.0321 (7)
C11 0.83370 (9) 0.5570 (3) 0.16926 (12) 0.0226 (6)
C12 0.80724 (11) 0.6148 (3) 0.11321 (14) 0.0341 (7)
H12A 0.7798 0.5681 0.1144 0.051*
H12B 0.8207 0.5858 0.0750 0.051*
H12C 0.8046 0.7266 0.1152 0.051*
C13 0.81175 (10) 0.6059 (3) 0.22944 (13) 0.0326 (7)
H13A 0.7845 0.5579 0.2308 0.049*
H13B 0.8087 0.7177 0.2302 0.049*
H13C 0.8283 0.5729 0.2651 0.049*
C14 0.87701 (10) 0.6353 (3) 0.16623 (15) 0.0342 (7)
H14A 0.8942 0.6012 0.2011 0.051*
H14B 0.8737 0.7469 0.1679 0.051*
H14C 0.8903 0.6069 0.1278 0.051*
C15 0.85457 (9) 0.2395 (3) 0.23398 (12) 0.0226 (6)
C16 0.86514 (10) 0.0712 (3) 0.21485 (13) 0.0303 (7)
H16A 0.8870 0.0725 0.1844 0.045*
H16B 0.8405 0.0221 0.1971 0.045*
H16C 0.8745 0.0135 0.2511 0.045*
C17 0.89435 (10) 0.3151 (3) 0.26297 (13) 0.0287 (7)
H17A 0.8883 0.4209 0.2748 0.043*
H17B 0.9164 0.3146 0.2328 0.043*
H17C 0.9032 0.2567 0.2994 0.043*
C18 0.81986 (10) 0.2332 (3) 0.28269 (13) 0.0317 (7)
H18A 0.8128 0.3376 0.2954 0.048*
H18B 0.8296 0.1747 0.3185 0.048*
H18C 0.7954 0.1833 0.2648 0.048*
C21 0.92859 (9) 0.3402 (3) −0.05827 (13) 0.0227 (6)
C22 0.92236 (10) 0.5106 (3) −0.03761 (16) 0.0352 (8)
H22A 0.9251 0.5175 0.0072 0.053*
H22B 0.8948 0.5455 −0.0505 0.053*
H22C 0.9433 0.5755 −0.0566 0.053*
C23 0.92422 (10) 0.3335 (3) −0.12995 (14) 0.0329 (7)
H23A 0.8962 0.3636 −0.1424 0.049*
H23B 0.9296 0.2288 −0.1440 0.049*
H23C 0.9441 0.4039 −0.1483 0.049*
C24 0.97330 (9) 0.2906 (3) −0.03876 (14) 0.0277 (6)
H24A 0.9762 0.2945 0.0061 0.042*
H24B 0.9933 0.3604 −0.0572 0.042*
H24C 0.9784 0.1858 −0.0530 0.042*
C25 0.89841 (9) 0.0076 (3) −0.02237 (12) 0.0212 (6)
C26 0.93066 (10) −0.0421 (3) 0.02756 (13) 0.0306 (7)
H26A 0.9572 0.0072 0.0195 0.046*
H26B 0.9340 −0.1537 0.0265 0.046*
H26C 0.9211 −0.0110 0.0682 0.046*
C27 0.85646 (10) −0.0734 (3) −0.00816 (14) 0.0317 (7)
H27A 0.8357 −0.0441 −0.0393 0.047*
H27B 0.8472 −0.0418 0.0325 0.047*
H27C 0.8603 −0.1848 −0.0088 0.047*
C28 0.91206 (10) −0.0450 (3) −0.08764 (13) 0.0287 (7)
H28A 0.8912 −0.0139 −0.1182 0.043*
H28B 0.9150 −0.1568 −0.0882 0.043*
H28C 0.9385 0.0028 −0.0973 0.043*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Ni1 0.0181 (2) 0.01832 (18) 0.01790 (19) 0.00151 (13) −0.00099 (14) −0.00328 (12)
P1 0.0194 (4) 0.0159 (3) 0.0160 (3) 0.0014 (3) −0.0019 (3) −0.0026 (2)
O1 0.0177 (10) 0.0275 (10) 0.0168 (9) −0.0013 (8) −0.0016 (8) −0.0021 (7)
C1 0.0189 (15) 0.0226 (13) 0.0195 (13) 0.0009 (11) 0.0016 (11) 0.0035 (10)
P2 0.0155 (4) 0.0157 (3) 0.0166 (3) 0.0024 (3) −0.0002 (3) 0.0007 (2)
O2 0.0164 (10) 0.0310 (10) 0.0179 (9) 0.0043 (8) −0.0004 (8) 0.0011 (7)
C2 0.0185 (15) 0.0272 (14) 0.0130 (12) −0.0007 (11) −0.0015 (11) 0.0003 (10)
O3 0.0249 (14) 0.0843 (18) 0.0434 (15) −0.0081 (13) −0.0078 (11) −0.0117 (12)
C3 0.0228 (16) 0.0263 (14) 0.0299 (16) 0.0042 (12) −0.0022 (13) −0.0033 (11)
C4 0.0252 (17) 0.0259 (14) 0.0328 (16) 0.0066 (12) −0.0059 (13) −0.0069 (11)
C5 0.0227 (16) 0.0273 (14) 0.0246 (14) 0.0012 (12) −0.0034 (12) −0.0039 (11)
C6 0.0168 (15) 0.0271 (14) 0.0141 (12) 0.0027 (11) −0.0002 (11) 0.0019 (10)
C7 0.0313 (19) 0.0401 (17) 0.0249 (16) −0.0002 (14) −0.0007 (14) −0.0080 (12)
C11 0.0256 (16) 0.0165 (12) 0.0257 (14) 0.0024 (11) 0.0002 (12) −0.0032 (10)
C12 0.047 (2) 0.0236 (15) 0.0315 (17) 0.0094 (14) −0.0019 (15) 0.0035 (12)
C13 0.042 (2) 0.0256 (15) 0.0302 (16) 0.0111 (14) 0.0045 (14) −0.0059 (12)
C14 0.0341 (19) 0.0184 (13) 0.050 (2) −0.0020 (13) 0.0053 (15) −0.0072 (12)
C15 0.0227 (16) 0.0261 (14) 0.0188 (13) 0.0022 (12) −0.0047 (11) 0.0017 (10)
C16 0.0355 (19) 0.0226 (14) 0.0325 (16) 0.0049 (13) −0.0088 (14) 0.0020 (11)
C17 0.0278 (18) 0.0333 (16) 0.0247 (15) 0.0007 (13) −0.0099 (13) −0.0024 (11)
C18 0.0328 (19) 0.0401 (17) 0.0221 (15) 0.0033 (14) −0.0012 (13) 0.0046 (12)
C21 0.0180 (15) 0.0223 (13) 0.0278 (15) 0.0008 (11) 0.0010 (12) 0.0032 (11)
C22 0.0286 (18) 0.0213 (14) 0.056 (2) −0.0025 (13) 0.0063 (15) 0.0081 (13)
C23 0.0265 (18) 0.0400 (17) 0.0326 (17) 0.0019 (14) 0.0078 (14) 0.0152 (13)
C24 0.0205 (16) 0.0283 (15) 0.0343 (16) 0.0002 (12) 0.0023 (13) 0.0002 (11)
C25 0.0267 (16) 0.0163 (12) 0.0204 (13) 0.0015 (11) −0.0003 (12) −0.0013 (10)
C26 0.042 (2) 0.0225 (14) 0.0273 (15) 0.0094 (13) −0.0057 (14) 0.0014 (11)
C27 0.039 (2) 0.0168 (13) 0.0390 (18) −0.0041 (13) 0.0057 (15) −0.0002 (12)
C28 0.042 (2) 0.0203 (13) 0.0242 (15) 0.0059 (13) −0.0012 (13) −0.0048 (11)

Geometric parameters (Å, º)

Ni1—C7 1.736 (3) C14—H14B 0.9600
Ni1—P2 2.2021 (7) C14—H14C 0.9600
Ni1—P1 2.2028 (7) C15—C18 1.530 (4)
P1—O1 1.654 (2) C15—C16 1.534 (4)
P1—C11 1.882 (2) C15—C17 1.540 (4)
P1—C15 1.893 (3) C16—H16A 0.9600
O1—C2i 1.438 (3) C16—H16B 0.9600
C1—C6 1.521 (4) C16—H16C 0.9600
C1—C2 1.523 (4) C17—H17A 0.9600
C1—H1A 0.9700 C17—H17B 0.9600
C1—H1B 0.9700 C17—H17C 0.9600
P2—O2 1.6448 (19) C18—H18A 0.9600
P2—C25 1.878 (2) C18—H18B 0.9600
P2—C21 1.894 (3) C18—H18C 0.9600
O2—C6 1.438 (3) C21—C24 1.534 (4)
C2—O1i 1.438 (3) C21—C23 1.534 (4)
C2—C3 1.512 (3) C21—C22 1.536 (4)
C2—H2 0.9800 C22—H22A 0.9600
O3—C7 1.162 (4) C22—H22B 0.9600
C3—C4 1.518 (4) C22—H22C 0.9600
C3—H3A 0.9700 C23—H23A 0.9600
C3—H3B 0.9700 C23—H23B 0.9600
C4—C5 1.533 (4) C23—H23C 0.9600
C4—H4A 0.9700 C24—H24A 0.9600
C4—H4B 0.9700 C24—H24B 0.9600
C5—C6 1.507 (3) C24—H24C 0.9600
C5—H5A 0.9700 C25—C26 1.526 (4)
C5—H5B 0.9700 C25—C28 1.533 (4)
C6—H6 0.9800 C25—C27 1.537 (4)
C11—C13 1.530 (4) C26—H26A 0.9600
C11—C12 1.532 (4) C26—H26B 0.9600
C11—C14 1.533 (4) C26—H26C 0.9600
C12—H12A 0.9600 C27—H27A 0.9600
C12—H12B 0.9600 C27—H27B 0.9600
C12—H12C 0.9600 C27—H27C 0.9600
C13—H13A 0.9600 C28—H28A 0.9600
C13—H13B 0.9600 C28—H28B 0.9600
C13—H13C 0.9600 C28—H28C 0.9600
C14—H14A 0.9600
C7—Ni1—P2 108.38 (10) C11—C14—H14C 109.5
C7—Ni1—P1 108.39 (10) H14A—C14—H14C 109.5
P2—Ni1—P1 143.19 (3) H14B—C14—H14C 109.5
O1—P1—C11 98.33 (11) C18—C15—C16 108.2 (2)
O1—P1—C15 96.52 (11) C18—C15—C17 109.8 (2)
C11—P1—C15 110.98 (12) C16—C15—C17 108.5 (2)
O1—P1—Ni1 128.58 (7) C18—C15—P1 114.0 (2)
C11—P1—Ni1 109.51 (9) C16—C15—P1 104.64 (18)
C15—P1—Ni1 111.55 (9) C17—C15—P1 111.38 (18)
C2i—O1—P1 122.67 (16) C15—C16—H16A 109.5
C6—C1—C2 111.6 (2) C15—C16—H16B 109.5
C6—C1—H1A 109.3 H16A—C16—H16B 109.5
C2—C1—H1A 109.3 C15—C16—H16C 109.5
C6—C1—H1B 109.3 H16A—C16—H16C 109.5
C2—C1—H1B 109.3 H16B—C16—H16C 109.5
H1A—C1—H1B 108.0 C15—C17—H17A 109.5
O2—P2—C25 98.35 (11) C15—C17—H17B 109.5
O2—P2—C21 96.88 (11) H17A—C17—H17B 109.5
C25—P2—C21 110.52 (12) C15—C17—H17C 109.5
O2—P2—Ni1 128.64 (7) H17A—C17—H17C 109.5
C25—P2—Ni1 109.50 (8) H17B—C17—H17C 109.5
C21—P2—Ni1 111.50 (9) C15—C18—H18A 109.5
C6—O2—P2 123.55 (15) C15—C18—H18B 109.5
O1i—C2—C3 110.8 (2) H18A—C18—H18B 109.5
O1i—C2—C1 107.85 (19) C15—C18—H18C 109.5
C3—C2—C1 111.1 (2) H18A—C18—H18C 109.5
O1i—C2—H2 109.0 H18B—C18—H18C 109.5
C3—C2—H2 109.0 C24—C21—C23 109.1 (2)
C1—C2—H2 109.0 C24—C21—C22 107.9 (2)
C2—C3—C4 111.3 (2) C23—C21—C22 108.1 (2)
C2—C3—H3A 109.4 C24—C21—P2 112.14 (18)
C4—C3—H3A 109.4 C23—C21—P2 113.38 (19)
C2—C3—H3B 109.4 C22—C21—P2 105.86 (19)
C4—C3—H3B 109.4 C21—C22—H22A 109.5
H3A—C3—H3B 108.0 C21—C22—H22B 109.5
C3—C4—C5 110.5 (2) H22A—C22—H22B 109.5
C3—C4—H4A 109.6 C21—C22—H22C 109.5
C5—C4—H4A 109.6 H22A—C22—H22C 109.5
C3—C4—H4B 109.6 H22B—C22—H22C 109.5
C5—C4—H4B 109.6 C21—C23—H23A 109.5
H4A—C4—H4B 108.1 C21—C23—H23B 109.5
C6—C5—C4 111.2 (2) H23A—C23—H23B 109.5
C6—C5—H5A 109.4 C21—C23—H23C 109.5
C4—C5—H5A 109.4 H23A—C23—H23C 109.5
C6—C5—H5B 109.4 H23B—C23—H23C 109.5
C4—C5—H5B 109.4 C21—C24—H24A 109.5
H5A—C5—H5B 108.0 C21—C24—H24B 109.5
O2—C6—C5 111.2 (2) H24A—C24—H24B 109.5
O2—C6—C1 106.77 (19) C21—C24—H24C 109.5
C5—C6—C1 111.3 (2) H24A—C24—H24C 109.5
O2—C6—H6 109.2 H24B—C24—H24C 109.5
C5—C6—H6 109.2 C26—C25—C28 110.8 (2)
C1—C6—H6 109.2 C26—C25—C27 108.1 (2)
O3—C7—Ni1 176.8 (3) C28—C25—C27 107.9 (2)
C13—C11—C12 108.3 (2) C26—C25—P2 110.76 (18)
C13—C11—C14 109.8 (2) C28—C25—P2 113.90 (17)
C12—C11—C14 107.9 (2) C27—C25—P2 104.98 (18)
C13—C11—P1 114.45 (18) C25—C26—H26A 109.5
C12—C11—P1 105.24 (18) C25—C26—H26B 109.5
C14—C11—P1 110.74 (18) H26A—C26—H26B 109.5
C11—C12—H12A 109.5 C25—C26—H26C 109.5
C11—C12—H12B 109.5 H26A—C26—H26C 109.5
H12A—C12—H12B 109.5 H26B—C26—H26C 109.5
C11—C12—H12C 109.5 C25—C27—H27A 109.5
H12A—C12—H12C 109.5 C25—C27—H27B 109.5
H12B—C12—H12C 109.5 H27A—C27—H27B 109.5
C11—C13—H13A 109.5 C25—C27—H27C 109.5
C11—C13—H13B 109.5 H27A—C27—H27C 109.5
H13A—C13—H13B 109.5 H27B—C27—H27C 109.5
C11—C13—H13C 109.5 C25—C28—H28A 109.5
H13A—C13—H13C 109.5 C25—C28—H28B 109.5
H13B—C13—H13C 109.5 H28A—C28—H28B 109.5
C11—C14—H14A 109.5 C25—C28—H28C 109.5
C11—C14—H14B 109.5 H28A—C28—H28C 109.5
H14A—C14—H14B 109.5 H28B—C28—H28C 109.5

Symmetry code: (i) −x+3/2, −y+1/2, −z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5304).

References

  1. Agilent (2011). CrysAlis PRO Agilent Technologies Inc., Santa Clara, CA, USA.
  2. Brun, S., Torres, O., Pla-Quintana, A., Roglans, A., Goddard, R. & Porschke, K. R. (2013). Organometallics, 32, 1710–1720.
  3. Castonguay, A., Beauchamp, A. L. & Zargarian, D. (2008). Organometallics, 27, 5723–5731.
  4. CrystalMaker (2001). CrystalMaker CrystalMaker Software Ltd, Biscester, England.
  5. Johnson, M. T. & Wendt, O. F. (2011). Inorg. Chim. Acta, 367, 222–224.
  6. Liang, L. C., Hung, Y. T., Huang, Y. L., Chien, P. S., Lee, P. Y. & Chen, W. C. (2012). Organometallics, 31, 700–708.
  7. Maciejewski, H., Sydor, A. & Kubicki, M. (2004). J. Organomet. Chem. 689, 3075–3081.
  8. Olsson, D., Arunachalampillai, A. & Wendt, O. F. (2007). Dalton Trans. pp. 5427–5433. [DOI] [PubMed]
  9. Pandarus, V., Castonguay, A. & Zargarian, D. (2008). Dalton Trans. pp. 4756–4761. [DOI] [PubMed]
  10. Rosenthal, U., Oehme, G., Gorls, H., Burlakov, V. V., Polyakov, A. V., Yanovsky, A. I. & Struchkov, Y. T. (1990). J. Organomet. Chem. 389, 409–416.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Sjövall, S., Andersson, C. & Wendt, O. F. (2001). Inorg. Chim. Acta, 325, 182–186.
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007818/tk5304sup1.cif

e-70-0m176-sup1.cif (31.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007818/tk5304Isup2.hkl

e-70-0m176-Isup2.hkl (340.6KB, hkl)

CCDC reference: 996025

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES