Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 2;70(Pt 5):o510–o511. doi: 10.1107/S160053681400645X

2,2′-[2,4-Bis(naphthalen-1-yl)cyclo­butane-1,3-di­yl]bis­(1-methyl­pyridinium) bis­(4-chloro­benzene­sulfonate): thermal-induced [2 + 2] cyclo­addition reaction of a heterostilbene

Suchada Chantrapromma a,*,, Kullapa Chanawanno a, Nawong Boonnak b, Hoong-Kun Fun c,§
PMCID: PMC4011255  PMID: 24860326

Abstract

The asymmetric unit of the title salt, C36H32N2 2+·2C6H4ClO3S, consists of one anion and one half-cation, the other half being generated by inversion symmetry. The dihedral angle between the pyridinium ring and the napthalene ring system in the asymmetric unit is 42.86 (6)°. In the crystal, cations and anions are linked by weak C—H⋯O inter­actions into chains along [010]. Adjacent chains are further arranged in an anti­parallel manner into sheets parallel to the bc plane. π–π inter­actions are observed involving the cations, with centroid–centroid distances of 3.7664 (8) and 3.8553 (8) Å.

Related literature  

For background to stibene and [2 + 2] photodimerization, see: Chanawanno et al. (2010); Chantrapromma et al. (2007); Papaefsta­thiou et al. (2002); Ruanwas et al. (2010); Yayli et al. (2004); Zhang et al. (2013). For related structures, see: Chantrapromma et al. (2012); Fun, Chanawanno & Chantrapromma (2009); Fun, Surasit et al. (2009). For bond-length data, see: Allen et al. (1987). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986).graphic file with name e-70-0o510-scheme1.jpg

Experimental  

Crystal data  

  • C36H32N2 2+·2C6H4ClO3S

  • M r = 875.86

  • Triclinic, Inline graphic

  • a = 7.5488 (3) Å

  • b = 11.1899 (4) Å

  • c = 12.3853 (5) Å

  • α = 79.904 (2)°

  • β = 75.964 (2)°

  • γ = 89.266 (2)°

  • V = 998.76 (7) Å3

  • Z = 1

  • Mo Kα radiation

  • μ = 0.32 mm−1

  • T = 100 K

  • 0.56 × 0.50 × 0.21 mm

Data collection  

  • Bruker APEXII CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2005) T min = 0.837, T max = 0.936

  • 35475 measured reflections

  • 5817 independent reflections

  • 4977 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.115

  • S = 1.09

  • 5817 reflections

  • 351 parameters

  • All H-atom parameters refined

  • Δρmax = 0.50 e Å−3

  • Δρmin = −0.74 e Å−3

Data collection: APEX2 (Bruker, 2005); cell refinement: SAINT (Bruker, 2005); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681400645X/rz5110sup1.cif

e-70-0o510-sup1.cif (30.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400645X/rz5110Isup2.hkl

e-70-0o510-Isup2.hkl (284.8KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400645X/rz5110Isup3.cml

CCDC reference: 993267

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C1–C6 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C7—H7⋯O3 0.97 (2) 2.51 (2) 3.3762 (18) 147.9 (18)
C17—H17⋯O2i 0.974 (17) 2.506 (18) 3.3001 (18) 138.6 (13)
C20—H20⋯O2 0.97 (2) 2.20 (2) 3.1329 (18) 160.5 (19)
C23—H23⋯O1ii 0.94 (2) 2.41 (2) 3.1554 (17) 135.8 (18)
C24—H24B⋯O1ii 0.95 (2) 2.57 (2) 3.2009 (18) 124.3 (16)
C9—H9⋯Cg4iii 1.00 (2) 2.98 (2) 3.4790 (16) 112.1 (16)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

The authors thank the Department of Chemistry, Faculty of Science, Prince of Songkla University, for the research facility and extend their appreciation to the Malaysian Government and Universiti Sains Malaysia for APEX DE2012 grant No. 1002/PFIZIK/910323.

supplementary crystallographic information

1. Comment

Stilbene derivatives have been reported to exhibit non-linear optical (NLO) property (Ruanwas et al., 2010) and antibacterial activity (Chanawanno et al., 2010). It has been known that [2 + 2] photodimerization of stilbenes to yield cyclobutane can occur (Papaefstathiou et al., 2002). In our cases, the [2 + 2] cycloaddition of heterostilbene derivatives was carried out in solution by thermal-induced cycloaddition reaction, and we have previously reported the crystal structures of some of these derivatives (Chantrapromma et al., 2012; Fun, Chanawanno & Chantrapromma, 2009; Fun, Surasit et al., 2009). The title compound (I) was obtained by the cycloaddition of trans-heterostilbene to give a syn head-to-tail product (Yayli et al., 2004; Zhang et al., 2013). We report herein the synthesis and crystal structure of (I).

The asymmetric unit of (I), C36H32N22+·2(C6H4ClO3S-), consists of one half of a cation and one anion. The cation lies on an inversion center and the other half is generated by the symmetry operator 2-x, 1-y, 2-z (Fig. 1). The napthalene (C7–C16) moiety is planar with a r.m.s. of 0.0183 (2) Å. The dihedral angle between the pyridinium ring (N1/C19–C23) and the napthalene ring system is 42.86 (6)°. The steroisomer of (I) is syn head-to-tail (Yayli et al., 2004). The cyclobutane ring makes dihedral angles of 85.61 (8) and 52.8 (6)° with the pyridinium and naphthalene rings, respectively. The bond lengths are in normal ranges (Allen et al., 1987) and comparable with those found in closely related structures (Chantrapromma et al., 2012; Fun, Surasit et al., 2009; Fun, Chanawanno & Chantrapromma (2009).

The crystal packing of (I) is shown in Fig. 2. The cations and anions are alternatively arranged and linked into chains along the [0 1 0] direction through C—H···O weak interactions (Table 1). Adjacent chains are arranged in a anti-parallel manner into sheets parallel to the (1 0 0) plane. π···π interactions are present with distances of Cg1···Cg2 = 3.8553 (8) Å and Cg1···Cg3 = 3.7664 (8) Å; Cg1, Cg2 and Cg3 are the centroids of the N1/C19–C23, C7–C10/C15/C16 and C10–C15 rings, respectively (Fig. 3). C—H···π weak interactions are also observed (Table 1).

2. Experimental

A solution of (E)-1-methyl-2-[2-(1-naphthyl)vinyl)pyridinium iodide (0.25 g, 0.67 mmol) in CH3OH (20 ml) was mixed (1:1 molar ratio) with a solution of silver(I) 4-chlorobenzenesulfonate (0.20 g, 0.67 mmol) (Chantrapromma et al., 2007) in CH3OH (80 ml) and stirred for 30 min. The precipitate of silver iodide which formed was filtered and the filtrate was evaporated to give a yellow solid product. The yellow solid was repeatedly recrystallized for three times by dissolving the yellow solid in CH3OH and the solution was heated at 323 K to get a clear solution. The [2 + 2] cycloaddition of (E)-1-methyl-2-[2-(1-naphthyl)vinyl)pyridinium occurred upon heating. Yellow plate-shaped single crystals of the title compound suitable for X-ray structure determination were obtained after recrystallization in CH3OH by slow evaporation of the solvent at room temperature after a few weeks.

3. Refinement

All H atoms were located in difference Fourier map and refined isotropically.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, with 50% probability displacement ellipsoids. Symmetry code: (A) 2-x, 1-y, 2-z,

Fig. 2.

Fig. 2.

The crystal packing of the title compound viewed down the a axis. H atoms not involved in C—H···O interactions (dashed lines) are omitted for clarity.

Fig. 3.

Fig. 3.

The π···π stacking interactions between the pyridinium and napthalene rings. H atoms are omitted for clarity.

Crystal data

C36H32N22+·2C6H4ClO3S Z = 1
Mr = 875.86 F(000) = 456
Triclinic, P1 Dx = 1.456 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.5488 (3) Å Cell parameters from 5817 reflections
b = 11.1899 (4) Å θ = 1.9–30.0°
c = 12.3853 (5) Å µ = 0.32 mm1
α = 79.904 (2)° T = 100 K
β = 75.964 (2)° Plate, yellow
γ = 89.266 (2)° 0.56 × 0.50 × 0.21 mm
V = 998.76 (7) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer 5817 independent reflections
Radiation source: sealed tube 4977 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.031
φ and ω scans θmax = 30.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −10→10
Tmin = 0.837, Tmax = 0.936 k = −15→15
35475 measured reflections l = −17→17

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115 All H-atom parameters refined
S = 1.09 w = 1/[σ2(Fo2) + (0.052P)2 + 0.7427P] where P = (Fo2 + 2Fc2)/3
5817 reflections (Δ/σ)max = 0.001
351 parameters Δρmax = 0.50 e Å3
0 restraints Δρmin = −0.74 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.34039 (7) 0.25081 (7) 0.47197 (4) 0.05223 (17)
S1 0.78639 (5) 0.19952 (3) 0.84360 (3) 0.01743 (9)
O1 0.73608 (18) 0.08040 (9) 0.91361 (10) 0.0249 (2)
O2 0.73144 (17) 0.29857 (10) 0.90582 (9) 0.0247 (2)
O3 0.97566 (16) 0.21127 (10) 0.77961 (10) 0.0245 (2)
N1 0.71757 (16) 0.75327 (10) 0.97380 (10) 0.0141 (2)
C1 0.65583 (19) 0.21394 (13) 0.74055 (12) 0.0169 (2)
C2 0.6222 (2) 0.11222 (14) 0.69692 (13) 0.0216 (3)
H2 0.669 (3) 0.036 (2) 0.7248 (18) 0.030 (5)*
C3 0.5228 (2) 0.12351 (18) 0.61444 (14) 0.0295 (4)
H3 0.499 (4) 0.050 (2) 0.587 (2) 0.048 (7)*
C4 0.4605 (2) 0.23620 (19) 0.57678 (13) 0.0310 (4)
C5 0.4931 (2) 0.33809 (18) 0.61922 (14) 0.0306 (4)
H5 0.445 (4) 0.416 (2) 0.594 (2) 0.044 (7)*
C6 0.5919 (2) 0.32641 (15) 0.70183 (13) 0.0243 (3)
H6 0.614 (3) 0.399 (2) 0.733 (2) 0.043 (7)*
C7 1.1080 (2) 0.50647 (12) 0.73600 (12) 0.0171 (3)
H7 1.107 (3) 0.420 (2) 0.7661 (18) 0.031 (5)*
C8 1.0998 (2) 0.54409 (13) 0.62185 (12) 0.0201 (3)
H8 1.094 (3) 0.4832 (19) 0.5774 (17) 0.023 (5)*
C9 1.0930 (2) 0.66488 (14) 0.57787 (12) 0.0198 (3)
H9 1.083 (3) 0.692 (2) 0.498 (2) 0.037 (6)*
C10 1.09915 (19) 0.75385 (12) 0.64568 (11) 0.0166 (2)
C11 1.0880 (2) 0.87977 (13) 0.60332 (12) 0.0201 (3)
H11 1.079 (3) 0.9014 (19) 0.5266 (17) 0.025 (5)*
C12 1.0923 (2) 0.96528 (13) 0.66949 (13) 0.0214 (3)
H12 1.081 (3) 1.0496 (19) 0.6386 (17) 0.025 (5)*
C13 1.1119 (2) 0.92916 (12) 0.78099 (13) 0.0187 (3)
H13 1.113 (3) 0.9900 (19) 0.8269 (17) 0.024 (5)*
C14 1.12389 (19) 0.80819 (12) 0.82451 (12) 0.0156 (2)
H14 1.139 (3) 0.7860 (17) 0.9006 (16) 0.016 (4)*
C15 1.11430 (18) 0.71681 (12) 0.75936 (11) 0.0139 (2)
C16 1.11371 (18) 0.58955 (12) 0.80500 (11) 0.0136 (2)
C17 1.10424 (18) 0.55360 (11) 0.92961 (11) 0.0127 (2)
H17 1.208 (2) 0.5887 (16) 0.9483 (15) 0.013 (4)*
C18 0.92111 (18) 0.58354 (11) 1.01586 (11) 0.0128 (2)
H18 0.951 (3) 0.6318 (18) 1.0651 (17) 0.022 (5)*
C19 0.77448 (17) 0.63876 (11) 0.96192 (11) 0.0127 (2)
C20 0.70618 (18) 0.58062 (12) 0.88915 (12) 0.0154 (2)
H20 0.743 (3) 0.4980 (18) 0.8833 (17) 0.023 (5)*
C21 0.59784 (19) 0.64167 (13) 0.82278 (12) 0.0175 (3)
H21 0.552 (3) 0.6025 (19) 0.7721 (18) 0.027 (5)*
C22 0.5555 (2) 0.76146 (13) 0.83035 (13) 0.0187 (3)
H22 0.478 (3) 0.806 (2) 0.7852 (18) 0.028 (5)*
C23 0.61171 (19) 0.81340 (12) 0.90961 (12) 0.0174 (3)
H23 0.578 (3) 0.8907 (19) 0.9267 (17) 0.025 (5)*
C24 0.7691 (2) 0.81744 (13) 1.05723 (12) 0.0178 (3)
H24A 0.750 (3) 0.7626 (19) 1.1291 (17) 0.023 (5)*
H24B 0.694 (3) 0.886 (2) 1.0634 (18) 0.031 (6)*
H24C 0.895 (3) 0.8424 (19) 1.0323 (18) 0.027 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0367 (3) 0.0909 (5) 0.0291 (2) −0.0113 (3) −0.02130 (19) 0.0088 (2)
S1 0.02519 (18) 0.00977 (15) 0.02051 (17) −0.00007 (12) −0.01122 (13) −0.00329 (11)
O1 0.0397 (6) 0.0112 (4) 0.0270 (5) −0.0022 (4) −0.0167 (5) 0.0003 (4)
O2 0.0404 (7) 0.0139 (5) 0.0229 (5) −0.0003 (4) −0.0111 (5) −0.0072 (4)
O3 0.0231 (5) 0.0204 (5) 0.0343 (6) 0.0009 (4) −0.0135 (5) −0.0069 (4)
N1 0.0151 (5) 0.0097 (5) 0.0181 (5) 0.0009 (4) −0.0051 (4) −0.0023 (4)
C1 0.0177 (6) 0.0167 (6) 0.0171 (6) 0.0012 (5) −0.0057 (5) −0.0030 (5)
C2 0.0245 (7) 0.0209 (7) 0.0214 (7) −0.0032 (5) −0.0083 (5) −0.0049 (5)
C3 0.0287 (8) 0.0401 (10) 0.0219 (7) −0.0094 (7) −0.0096 (6) −0.0057 (7)
C4 0.0197 (7) 0.0538 (11) 0.0184 (7) −0.0029 (7) −0.0081 (6) 0.0016 (7)
C5 0.0262 (8) 0.0377 (9) 0.0245 (7) 0.0105 (7) −0.0072 (6) 0.0040 (7)
C6 0.0284 (8) 0.0219 (7) 0.0224 (7) 0.0073 (6) −0.0073 (6) −0.0021 (6)
C7 0.0210 (6) 0.0130 (6) 0.0174 (6) 0.0022 (5) −0.0050 (5) −0.0024 (5)
C8 0.0263 (7) 0.0181 (6) 0.0176 (6) 0.0027 (5) −0.0069 (5) −0.0057 (5)
C9 0.0236 (7) 0.0203 (7) 0.0154 (6) 0.0030 (5) −0.0060 (5) −0.0019 (5)
C10 0.0176 (6) 0.0149 (6) 0.0162 (6) 0.0021 (5) −0.0043 (5) 0.0000 (5)
C11 0.0238 (7) 0.0164 (6) 0.0185 (6) 0.0030 (5) −0.0062 (5) 0.0023 (5)
C12 0.0241 (7) 0.0131 (6) 0.0246 (7) 0.0015 (5) −0.0050 (5) 0.0018 (5)
C13 0.0204 (6) 0.0118 (6) 0.0234 (7) −0.0002 (5) −0.0055 (5) −0.0016 (5)
C14 0.0166 (6) 0.0119 (6) 0.0177 (6) −0.0008 (4) −0.0044 (5) −0.0012 (5)
C15 0.0141 (5) 0.0111 (5) 0.0161 (6) 0.0004 (4) −0.0042 (4) −0.0006 (4)
C16 0.0141 (5) 0.0114 (5) 0.0150 (5) 0.0008 (4) −0.0041 (4) −0.0007 (4)
C17 0.0144 (5) 0.0086 (5) 0.0153 (5) 0.0006 (4) −0.0048 (4) −0.0013 (4)
C18 0.0142 (5) 0.0091 (5) 0.0155 (5) 0.0009 (4) −0.0053 (4) −0.0009 (4)
C19 0.0130 (5) 0.0087 (5) 0.0161 (6) 0.0006 (4) −0.0038 (4) −0.0010 (4)
C20 0.0163 (6) 0.0109 (5) 0.0197 (6) 0.0001 (4) −0.0059 (5) −0.0027 (5)
C21 0.0176 (6) 0.0155 (6) 0.0215 (6) −0.0010 (5) −0.0087 (5) −0.0029 (5)
C22 0.0174 (6) 0.0153 (6) 0.0246 (7) 0.0021 (5) −0.0097 (5) −0.0007 (5)
C23 0.0172 (6) 0.0112 (5) 0.0244 (7) 0.0035 (5) −0.0074 (5) −0.0017 (5)
C24 0.0225 (7) 0.0129 (6) 0.0204 (6) 0.0033 (5) −0.0077 (5) −0.0063 (5)

Geometric parameters (Å, º)

Cl1—C4 1.7397 (16) C11—C12 1.370 (2)
S1—O3 1.4511 (12) C11—H11 0.96 (2)
S1—O1 1.4564 (11) C12—C13 1.412 (2)
S1—O2 1.4584 (11) C12—H12 0.96 (2)
S1—C1 1.7776 (14) C13—C14 1.3769 (18)
N1—C23 1.3529 (17) C13—H13 0.96 (2)
N1—C19 1.3673 (16) C14—C15 1.4217 (18)
N1—C24 1.4823 (17) C14—H14 0.965 (19)
C1—C6 1.390 (2) C15—C16 1.4368 (17)
C1—C2 1.394 (2) C16—C17 1.5094 (18)
C2—C3 1.395 (2) C17—C18i 1.5585 (17)
C2—H2 0.96 (2) C17—C18 1.6005 (18)
C3—C4 1.383 (3) C17—H17 0.974 (19)
C3—H3 0.97 (3) C18—C19 1.5000 (18)
C4—C5 1.384 (3) C18—C17i 1.5585 (17)
C5—C6 1.394 (2) C18—H18 0.95 (2)
C5—H5 0.98 (3) C19—C20 1.3932 (18)
C6—H6 0.99 (3) C20—C21 1.3879 (19)
C7—C16 1.3761 (18) C20—H20 0.97 (2)
C7—C8 1.4189 (19) C21—C22 1.388 (2)
C7—H7 0.98 (2) C21—H21 0.95 (2)
C8—C9 1.371 (2) C22—C23 1.375 (2)
C8—H8 0.96 (2) C22—H22 0.98 (2)
C9—C10 1.418 (2) C23—H23 0.94 (2)
C9—H9 1.00 (2) C24—H24A 0.97 (2)
C10—C11 1.4237 (19) C24—H24B 0.95 (2)
C10—C15 1.4282 (18) C24—H24C 0.96 (2)
O3—S1—O1 113.75 (7) C14—C13—C12 120.46 (13)
O3—S1—O2 113.02 (7) C14—C13—H13 120.5 (12)
O1—S1—O2 112.70 (7) C12—C13—H13 119.0 (12)
O3—S1—C1 105.26 (7) C13—C14—C15 121.07 (13)
O1—S1—C1 105.65 (7) C13—C14—H14 118.8 (11)
O2—S1—C1 105.50 (7) C15—C14—H14 120.1 (11)
C23—N1—C19 121.43 (12) C14—C15—C10 118.30 (12)
C23—N1—C24 116.89 (11) C14—C15—C16 122.34 (12)
C19—N1—C24 121.68 (11) C10—C15—C16 119.33 (12)
C6—C1—C2 120.35 (14) C7—C16—C15 118.98 (12)
C6—C1—S1 120.19 (11) C7—C16—C17 123.07 (12)
C2—C1—S1 119.44 (11) C15—C16—C17 117.77 (11)
C1—C2—C3 119.68 (15) C16—C17—C18i 118.70 (11)
C1—C2—H2 118.5 (13) C16—C17—C18 117.06 (11)
C3—C2—H2 121.8 (13) C18i—C17—C18 90.59 (9)
C4—C3—C2 119.18 (16) C16—C17—H17 110.6 (11)
C4—C3—H3 122.9 (16) C18i—C17—H17 109.6 (11)
C2—C3—H3 117.9 (16) C18—C17—H17 108.5 (10)
C3—C4—C5 121.80 (15) C19—C18—C17i 117.10 (11)
C3—C4—Cl1 119.17 (15) C19—C18—C17 115.18 (11)
C5—C4—Cl1 119.03 (15) C17i—C18—C17 89.41 (9)
C4—C5—C6 118.86 (16) C19—C18—H18 111.7 (12)
C4—C5—H5 120.9 (15) C17i—C18—H18 112.1 (12)
C6—C5—H5 120.3 (15) C17—C18—H18 109.4 (12)
C1—C6—C5 120.13 (16) N1—C19—C20 117.97 (12)
C1—C6—H6 120.6 (15) N1—C19—C18 120.58 (11)
C5—C6—H6 119.2 (15) C20—C19—C18 121.12 (11)
C16—C7—C8 121.32 (13) C21—C20—C19 120.72 (12)
C16—C7—H7 119.8 (13) C21—C20—H20 121.6 (12)
C8—C7—H7 118.9 (13) C19—C20—H20 117.6 (12)
C9—C8—C7 120.64 (13) C20—C21—C22 119.42 (13)
C9—C8—H8 120.8 (12) C20—C21—H21 120.9 (13)
C7—C8—H8 118.5 (12) C22—C21—H21 119.6 (13)
C8—C9—C10 120.03 (13) C23—C22—C21 118.63 (13)
C8—C9—H9 120.9 (14) C23—C22—H22 120.2 (13)
C10—C9—H9 119.0 (14) C21—C22—H22 121.0 (13)
C9—C10—C11 121.36 (13) N1—C23—C22 121.37 (13)
C9—C10—C15 119.59 (12) N1—C23—H23 114.0 (13)
C11—C10—C15 119.04 (13) C22—C23—H23 124.6 (13)
C12—C11—C10 121.14 (13) N1—C24—H24A 109.0 (12)
C12—C11—H11 122.0 (12) N1—C24—H24B 107.3 (14)
C10—C11—H11 116.8 (12) H24A—C24—H24B 111.1 (18)
C11—C12—C13 119.94 (13) N1—C24—H24C 109.9 (13)
C11—C12—H12 118.9 (12) H24A—C24—H24C 108.7 (18)
C13—C12—H12 121.2 (12) H24B—C24—H24C 110.7 (19)
O3—S1—C1—C6 −93.88 (13) C11—C10—C15—C16 176.00 (12)
O1—S1—C1—C6 145.45 (13) C8—C7—C16—C15 −1.0 (2)
O2—S1—C1—C6 25.87 (14) C8—C7—C16—C17 173.93 (13)
O3—S1—C1—C2 84.49 (13) C14—C15—C16—C7 −178.65 (13)
O1—S1—C1—C2 −36.18 (14) C10—C15—C16—C7 3.31 (19)
O2—S1—C1—C2 −155.76 (12) C14—C15—C16—C17 6.13 (19)
C6—C1—C2—C3 −0.4 (2) C10—C15—C16—C17 −171.91 (12)
S1—C1—C2—C3 −178.75 (12) C7—C16—C17—C18i −2.56 (19)
C1—C2—C3—C4 0.5 (2) C15—C16—C17—C18i 172.45 (11)
C2—C3—C4—C5 −0.4 (3) C7—C16—C17—C18 −109.58 (14)
C2—C3—C4—Cl1 178.78 (13) C15—C16—C17—C18 65.43 (15)
C3—C4—C5—C6 0.2 (3) C16—C17—C18—C19 3.08 (16)
Cl1—C4—C5—C6 −178.95 (13) C18i—C17—C18—C19 −119.90 (13)
C2—C1—C6—C5 0.2 (2) C16—C17—C18—C17i 122.98 (13)
S1—C1—C6—C5 178.57 (13) C18i—C17—C18—C17i 0.0
C4—C5—C6—C1 −0.1 (3) C23—N1—C19—C20 −6.00 (19)
C16—C7—C8—C9 −1.5 (2) C24—N1—C19—C20 174.15 (12)
C7—C8—C9—C10 1.7 (2) C23—N1—C19—C18 167.49 (12)
C8—C9—C10—C11 −178.48 (14) C24—N1—C19—C18 −12.36 (19)
C8—C9—C10—C15 0.6 (2) C17i—C18—C19—N1 139.98 (12)
C9—C10—C11—C12 179.41 (14) C17—C18—C19—N1 −116.85 (13)
C15—C10—C11—C12 0.3 (2) C17i—C18—C19—C20 −46.74 (17)
C10—C11—C12—C13 1.3 (2) C17—C18—C19—C20 56.43 (16)
C11—C12—C13—C14 −1.0 (2) N1—C19—C20—C21 6.1 (2)
C12—C13—C14—C15 −0.9 (2) C18—C19—C20—C21 −167.36 (13)
C13—C14—C15—C10 2.5 (2) C19—C20—C21—C22 −0.8 (2)
C13—C14—C15—C16 −175.60 (13) C20—C21—C22—C23 −4.6 (2)
C9—C10—C15—C14 178.74 (13) C19—N1—C23—C22 0.6 (2)
C11—C10—C15—C14 −2.1 (2) C24—N1—C23—C22 −179.56 (13)
C9—C10—C15—C16 −3.1 (2) C21—C22—C23—N1 4.8 (2)

Symmetry code: (i) −x+2, −y+1, −z+2.

Hydrogen-bond geometry (Å, º)

Cg4 is the centroid of the C1–C6 ring.

D—H···A D—H H···A D···A D—H···A
C7—H7···O3 0.97 (2) 2.51 (2) 3.3762 (18) 147.9 (18)
C17—H17···O2i 0.974 (17) 2.506 (18) 3.3001 (18) 138.6 (13)
C20—H20···O2 0.97 (2) 2.20 (2) 3.1329 (18) 160.5 (19)
C23—H23···O1ii 0.94 (2) 2.41 (2) 3.1554 (17) 135.8 (18)
C24—H24B···O1ii 0.95 (2) 2.57 (2) 3.2009 (18) 124.3 (16)
C9—H9···Cg4iii 1.00 (2) 2.98 (2) 3.4790 (16) 112.1 (16)

Symmetry codes: (i) −x+2, −y+1, −z+2; (ii) x, y+1, z; (iii) −x+2, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5110).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bruker (2005). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chanawanno, K., Chantrapromma, S., Anantapong, T., Kanjana-Opas, A. & Fun, H.-K. (2010). Eur. J. Med. Chem. 45, 4199–4208. [DOI] [PubMed]
  4. Chantrapromma, S., Chanawanno, K., Boonnak, N. & Fun, H.-K. (2012). Acta Cryst. E68, o67–o68. [DOI] [PMC free article] [PubMed]
  5. Chantrapromma, S., Suwanwong, T. & Fun, H.-K. (2007). Acta Cryst. E63, o821–o823.
  6. Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.
  7. Fun, H.-K., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2048–o2049. [DOI] [PMC free article] [PubMed]
  8. Fun, H.-K., Surasit, C., Chanawanno, K. & Chantrapromma, S. (2009). Acta Cryst. E65, o2346–o2347. [DOI] [PMC free article] [PubMed]
  9. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  10. Papaefstathiou, G. S., Friščić, T. & MacGillivray, L. R. (2002). J. Supramol. Chem. 2, 227–231.
  11. Ruanwas, P., Kobkeatthawin, T., Chantrapromma, S., Fun, H.-K., Philip, R., Smijesh, N., Padaki, M. & Isloor, A. M. (2010). Synth. Met. 160, 819–824.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Yayli, N., Üçüncü, O., Yaşar, A., Gök, Y., Küçük, M. & Kolayli, S. (2004). Turk. J. Chem 28, 515–521.
  16. Zhang, X.-J., Li, L.-Y., Wang, S.-S., Que, S., Yang, W.-Z., Zhang, F.-Y., Gong, N.-B., Cheng, W., Liang, H., Ye, M., Jia, Y.-X. & Zhang, Q.-Y. (2013). Tetrahedron, 69, 11074–11079.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681400645X/rz5110sup1.cif

e-70-0o510-sup1.cif (30.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400645X/rz5110Isup2.hkl

e-70-0o510-Isup2.hkl (284.8KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400645X/rz5110Isup3.cml

CCDC reference: 993267

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES