Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 5;70(Pt 5):o520. doi: 10.1107/S1600536814007181

5-Bromo-2,7-dimethyl-3-(4-methyl­phenyl­sulfon­yl)-1-benzo­furan

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC4011263  PMID: 24860334

Abstract

In the title compound, C17H15BrO3S, the dihedral angle between the mean planes of the benzo­furan and 4-methyl­phenyl rings is 76.43 (5)°. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds into inversion dimers that are further linked by Br⋯Br [3.6517 (4) Å] contacts about inversion centers into supra­molecular sheets that lie parallel to (111).

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2011, 2012, 2013).graphic file with name e-70-0o520-scheme1.jpg

Experimental  

Crystal data  

  • C17H15BrO3S

  • M r = 379.26

  • Triclinic, Inline graphic

  • a = 8.1554 (2) Å

  • b = 9.9790 (2) Å

  • c = 10.1260 (2) Å

  • α = 77.410 (1)°

  • β = 77.114 (1)°

  • γ = 76.009 (1)°

  • V = 767.68 (3) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 2.82 mm−1

  • T = 173 K

  • 0.34 × 0.32 × 0.23 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.543, T max = 0.746

  • 14016 measured reflections

  • 3812 independent reflections

  • 3336 reflections with I > 2σ(I)

  • R int = 0.033

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.028

  • wR(F 2) = 0.073

  • S = 1.04

  • 3812 reflections

  • 202 parameters

  • H-atom parameters constrained

  • Δρmax = 0.36 e Å−3

  • Δρmin = −0.42 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007181/gg2139sup1.cif

e-70-0o520-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007181/gg2139Isup2.hkl

e-70-0o520-Isup2.hkl (186.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007181/gg2139Isup3.cml

CCDC reference: 994776

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13⋯O2i 0.95 2.54 3.330 (2) 140

Symmetry code: (i) Inline graphic.

supplementary crystallographic information

1. Comment

As a part of our ongoing study of 5-bromo-2,7-dimethyl-1-benzofuran derivatives containing cyclohexylsulfonyl (Choi et al., 2011), 4-fluorophenylsulfonyl (Choi et al., 2012) and 4-methylphenylsulfinyl (Choi et al., 2013) substituents in the 3-position, we report here on the crystal structure of the title compound.

In the title molecule (Fig. 1), the benzofuran ring system is essentially planar, with a mean deviation of 0.008 (1) Å from the least-squares plane defined by the nine constituent atoms. The 4-methylphenyl ring is essentially planar, with a mean deviation of 0.005 (1) Å from the least-squares plane defined by the six constituent atoms. The dihedral angle formed by the benzofuran ring system and the 4-methylphenyl ring is 76.43 (5)°. In the crystal structure (Fig. 2), molecules are linked via pairs of C—H···O hydrogen bonds (Table 1) into inversion dimers.

In the crystal, molecules are linked via pairs of C—H···O hydrogen bonds into inversion dimers that are further linked by C—H···O interactions and Br···Br [3.6517 (4) Å] contacts about inversion centers into supramolecular sheets that lie parallel with the (111) plane.

2. Experimental

3-Chloroperoxybenzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 5-bromo-2,7-dimethyl-3-(4-methylphenylsulfanyl)-1-benzofuran (312 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 8h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane-ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 69%, m.p. 474-475 K; Rf = 0.48 (hexane-ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow vaporation of a solution of the title compound in ethyl acetate at room temperature.

3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL97 command AFIX 137 (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom numbering scheme. The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O and Br···Br interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) - x + 1, - y + 2, - z; (ii) - x + 1, - y + 1, - z + 1]

Crystal data

C17H15BrO3S Z = 2
Mr = 379.26 F(000) = 384
Triclinic, P1 Dx = 1.641 Mg m3
Hall symbol: -P 1 Melting point = 475–474 K
a = 8.1554 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.9790 (2) Å Cell parameters from 6793 reflections
c = 10.1260 (2) Å θ = 2.7–28.3°
α = 77.410 (1)° µ = 2.82 mm1
β = 77.114 (1)° T = 173 K
γ = 76.009 (1)° Block, colourless
V = 767.68 (3) Å3 0.34 × 0.32 × 0.23 mm

Data collection

Bruker SMART APEXII CCD diffractometer 3812 independent reflections
Radiation source: rotating anode 3336 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.033
Detector resolution: 10.0 pixels mm-1 θmax = 28.4°, θmin = 2.1°
φ and ω scans h = −10→10
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −13→13
Tmin = 0.543, Tmax = 0.746 l = −13→13
14016 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028 Hydrogen site location: difference Fourier map
wR(F2) = 0.073 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.3958P] where P = (Fo2 + 2Fc2)/3
3812 reflections (Δ/σ)max = 0.001
202 parameters Δρmax = 0.36 e Å3
0 restraints Δρmin = −0.42 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.50946 (3) 0.81656 (2) −0.00546 (2) 0.03262 (8)
S1 0.91173 (6) 0.31301 (5) 0.35042 (4) 0.02099 (10)
O1 0.93317 (17) 0.24115 (13) −0.01983 (13) 0.0222 (3)
O2 0.88773 (18) 0.45707 (15) 0.36343 (14) 0.0274 (3)
O3 1.06161 (18) 0.21433 (15) 0.38771 (14) 0.0287 (3)
C1 0.9028 (2) 0.31299 (19) 0.18034 (17) 0.0199 (3)
C2 0.8119 (2) 0.42615 (19) 0.09103 (18) 0.0195 (3)
C3 0.7156 (2) 0.56082 (19) 0.10102 (19) 0.0225 (4)
H3 0.6982 0.6000 0.1818 0.027*
C4 0.6470 (2) 0.63398 (19) −0.01324 (19) 0.0232 (4)
C5 0.6705 (3) 0.5809 (2) −0.13421 (19) 0.0251 (4)
H5 0.6202 0.6369 −0.2094 0.030*
C6 0.7667 (2) 0.4471 (2) −0.14618 (18) 0.0230 (4)
C7 0.8346 (2) 0.37528 (19) −0.03066 (18) 0.0205 (3)
C8 0.9720 (2) 0.2055 (2) 0.10962 (18) 0.0217 (4)
C9 0.7931 (3) 0.3831 (2) −0.2723 (2) 0.0308 (4)
H9A 0.9106 0.3284 −0.2890 0.046*
H9B 0.7745 0.4576 −0.3516 0.046*
H9C 0.7114 0.3215 −0.2585 0.046*
C10 1.0746 (3) 0.0626 (2) 0.1429 (2) 0.0284 (4)
H10A 1.0974 0.0473 0.2366 0.043*
H10B 1.1838 0.0523 0.0778 0.043*
H10C 1.0108 −0.0065 0.1363 0.043*
C11 0.7293 (2) 0.25019 (19) 0.44768 (18) 0.0206 (3)
C12 0.5677 (3) 0.3361 (2) 0.4457 (2) 0.0270 (4)
H12 0.5553 0.4269 0.3908 0.032*
C13 0.4250 (3) 0.2879 (2) 0.5248 (2) 0.0295 (4)
H13 0.3142 0.3461 0.5232 0.035*
C14 0.4410 (3) 0.1561 (2) 0.60634 (19) 0.0267 (4)
C15 0.6032 (3) 0.0716 (2) 0.6056 (2) 0.0303 (4)
H15 0.6155 −0.0193 0.6604 0.036*
C16 0.7476 (3) 0.1173 (2) 0.5263 (2) 0.0269 (4)
H16 0.8580 0.0580 0.5260 0.032*
C17 0.2839 (3) 0.1074 (3) 0.6937 (2) 0.0375 (5)
H17A 0.3131 0.0064 0.7278 0.056*
H17B 0.1937 0.1266 0.6384 0.056*
H17C 0.2427 0.1575 0.7718 0.056*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.03337 (12) 0.01974 (11) 0.03988 (13) −0.00075 (8) −0.00655 (9) −0.00013 (8)
S1 0.0221 (2) 0.0245 (2) 0.0167 (2) −0.00315 (17) −0.00529 (16) −0.00419 (16)
O1 0.0252 (7) 0.0221 (6) 0.0191 (6) −0.0024 (5) −0.0035 (5) −0.0065 (5)
O2 0.0345 (8) 0.0283 (7) 0.0229 (7) −0.0090 (6) −0.0053 (6) −0.0089 (6)
O3 0.0226 (7) 0.0357 (8) 0.0258 (7) −0.0006 (6) −0.0085 (5) −0.0031 (6)
C1 0.0201 (8) 0.0221 (9) 0.0162 (8) −0.0025 (7) −0.0034 (6) −0.0026 (7)
C2 0.0199 (8) 0.0211 (8) 0.0173 (8) −0.0053 (7) −0.0027 (6) −0.0021 (7)
C3 0.0254 (9) 0.0224 (9) 0.0199 (8) −0.0060 (7) −0.0024 (7) −0.0042 (7)
C4 0.0231 (9) 0.0184 (8) 0.0257 (9) −0.0044 (7) −0.0026 (7) −0.0004 (7)
C5 0.0277 (10) 0.0266 (10) 0.0209 (9) −0.0087 (8) −0.0067 (7) 0.0020 (7)
C6 0.0252 (9) 0.0272 (10) 0.0182 (8) −0.0094 (8) −0.0044 (7) −0.0023 (7)
C7 0.0216 (8) 0.0207 (8) 0.0190 (8) −0.0054 (7) −0.0023 (7) −0.0031 (7)
C8 0.0206 (9) 0.0248 (9) 0.0196 (8) −0.0044 (7) −0.0036 (7) −0.0037 (7)
C9 0.0392 (12) 0.0361 (11) 0.0195 (9) −0.0089 (9) −0.0079 (8) −0.0057 (8)
C10 0.0274 (10) 0.0236 (9) 0.0318 (10) 0.0015 (8) −0.0057 (8) −0.0072 (8)
C11 0.0222 (9) 0.0242 (9) 0.0154 (8) −0.0031 (7) −0.0039 (7) −0.0045 (7)
C12 0.0278 (10) 0.0226 (9) 0.0269 (10) −0.0009 (8) −0.0055 (8) −0.0007 (8)
C13 0.0227 (9) 0.0318 (11) 0.0301 (10) 0.0014 (8) −0.0038 (8) −0.0058 (8)
C14 0.0278 (10) 0.0326 (10) 0.0192 (9) −0.0059 (8) −0.0020 (7) −0.0060 (8)
C15 0.0316 (11) 0.0264 (10) 0.0273 (10) −0.0037 (8) −0.0049 (8) 0.0041 (8)
C16 0.0235 (9) 0.0274 (10) 0.0252 (9) 0.0011 (8) −0.0054 (8) −0.0005 (8)
C17 0.0312 (11) 0.0460 (13) 0.0328 (11) −0.0127 (10) 0.0004 (9) −0.0028 (10)

Geometric parameters (Å, º)

Br1—C4 1.9023 (19) C9—H9A 0.9800
Br1—Br1i 3.6517 (4) C9—H9B 0.9800
S1—O2 1.4343 (14) C9—H9C 0.9800
S1—O3 1.4381 (14) C10—H10A 0.9800
S1—C1 1.7400 (17) C10—H10B 0.9800
S1—C11 1.7618 (19) C10—H10C 0.9800
O1—C8 1.368 (2) C11—C16 1.383 (3)
O1—C7 1.380 (2) C11—C12 1.390 (3)
C1—C8 1.358 (3) C12—C13 1.384 (3)
C1—C2 1.446 (2) C12—H12 0.9500
C2—C7 1.391 (2) C13—C14 1.385 (3)
C2—C3 1.395 (3) C13—H13 0.9500
C3—C4 1.381 (3) C14—C15 1.385 (3)
C3—H3 0.9500 C14—C17 1.507 (3)
C4—C5 1.395 (3) C15—C16 1.385 (3)
C5—C6 1.391 (3) C15—H15 0.9500
C5—H5 0.9500 C16—H16 0.9500
C6—C7 1.386 (3) C17—H17A 0.9800
C6—C9 1.500 (3) C17—H17B 0.9800
C8—C10 1.479 (3) C17—H17C 0.9800
C4—Br1—Br1i 147.64 (6) H9A—C9—H9B 109.5
O2—S1—O3 119.77 (9) C6—C9—H9C 109.5
O2—S1—C1 106.40 (8) H9A—C9—H9C 109.5
O3—S1—C1 109.32 (9) H9B—C9—H9C 109.5
O2—S1—C11 107.59 (9) C8—C10—H10A 109.5
O3—S1—C11 107.93 (9) C8—C10—H10B 109.5
C1—S1—C11 104.85 (8) H10A—C10—H10B 109.5
C8—O1—C7 107.07 (14) C8—C10—H10C 109.5
C8—C1—C2 107.66 (15) H10A—C10—H10C 109.5
C8—C1—S1 126.61 (14) H10B—C10—H10C 109.5
C2—C1—S1 125.66 (14) C16—C11—C12 120.53 (18)
C7—C2—C3 119.23 (17) C16—C11—S1 120.14 (14)
C7—C2—C1 104.64 (16) C12—C11—S1 119.33 (15)
C3—C2—C1 136.13 (16) C13—C12—C11 119.24 (19)
C4—C3—C2 116.18 (17) C13—C12—H12 120.4
C4—C3—H3 121.9 C11—C12—H12 120.4
C2—C3—H3 121.9 C12—C13—C14 121.07 (19)
C3—C4—C5 123.76 (18) C12—C13—H13 119.5
C3—C4—Br1 118.52 (14) C14—C13—H13 119.5
C5—C4—Br1 117.71 (14) C13—C14—C15 118.72 (18)
C6—C5—C4 120.83 (18) C13—C14—C17 119.98 (19)
C6—C5—H5 119.6 C15—C14—C17 121.30 (19)
C4—C5—H5 119.6 C16—C15—C14 121.17 (19)
C7—C6—C5 114.64 (17) C16—C15—H15 119.4
C7—C6—C9 122.07 (18) C14—C15—H15 119.4
C5—C6—C9 123.28 (17) C11—C16—C15 119.25 (18)
O1—C7—C6 124.36 (16) C11—C16—H16 120.4
O1—C7—C2 110.27 (15) C15—C16—H16 120.4
C6—C7—C2 125.36 (18) C14—C17—H17A 109.5
C1—C8—O1 110.36 (16) C14—C17—H17B 109.5
C1—C8—C10 134.25 (17) H17A—C17—H17B 109.5
O1—C8—C10 115.38 (16) C14—C17—H17C 109.5
C6—C9—H9A 109.5 H17A—C17—H17C 109.5
C6—C9—H9B 109.5 H17B—C17—H17C 109.5
O2—S1—C1—C8 156.87 (17) C3—C2—C7—O1 179.91 (15)
O3—S1—C1—C8 26.20 (19) C1—C2—C7—O1 −0.49 (19)
C11—S1—C1—C8 −89.30 (18) C3—C2—C7—C6 −0.9 (3)
O2—S1—C1—C2 −26.54 (18) C1—C2—C7—C6 178.71 (17)
O3—S1—C1—C2 −157.20 (15) C2—C1—C8—O1 0.3 (2)
C11—S1—C1—C2 87.29 (17) S1—C1—C8—O1 177.42 (13)
C8—C1—C2—C7 0.1 (2) C2—C1—C8—C10 −178.7 (2)
S1—C1—C2—C7 −177.03 (14) S1—C1—C8—C10 −1.6 (3)
C8—C1—C2—C3 179.6 (2) C7—O1—C8—C1 −0.6 (2)
S1—C1—C2—C3 2.5 (3) C7—O1—C8—C10 178.59 (16)
C7—C2—C3—C4 0.8 (3) O2—S1—C11—C16 −139.02 (15)
C1—C2—C3—C4 −178.64 (19) O3—S1—C11—C16 −8.47 (18)
C2—C3—C4—C5 −0.5 (3) C1—S1—C11—C16 107.99 (16)
C2—C3—C4—Br1 178.49 (13) O2—S1—C11—C12 40.21 (17)
Br1i—Br1—C4—C3 70.15 (19) O3—S1—C11—C12 170.75 (15)
Br1i—Br1—C4—C5 −110.76 (15) C1—S1—C11—C12 −72.78 (16)
C3—C4—C5—C6 0.3 (3) C16—C11—C12—C13 0.8 (3)
Br1—C4—C5—C6 −178.75 (14) S1—C11—C12—C13 −178.44 (16)
C4—C5—C6—C7 −0.3 (3) C11—C12—C13—C14 0.5 (3)
C4—C5—C6—C9 178.51 (18) C12—C13—C14—C15 −1.2 (3)
C8—O1—C7—C6 −178.52 (17) C12—C13—C14—C17 178.7 (2)
C8—O1—C7—C2 0.69 (19) C13—C14—C15—C16 0.6 (3)
C5—C6—C7—O1 179.69 (16) C17—C14—C15—C16 −179.28 (19)
C9—C6—C7—O1 0.9 (3) C12—C11—C16—C15 −1.3 (3)
C5—C6—C7—C2 0.6 (3) S1—C11—C16—C15 177.89 (15)
C9—C6—C7—C2 −178.21 (18) C14—C15—C16—C11 0.6 (3)

Symmetry code: (i) −x+1, −y+2, −z.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C13—H13···O2ii 0.95 2.54 3.330 (2) 140

Symmetry code: (ii) −x+1, −y+1, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: GG2139).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o3208. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J. & Lee, U. (2013). Acta Cryst. E69, o720. [DOI] [PMC free article] [PubMed]
  5. Choi, H. D., Seo, P. J., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o1279. [DOI] [PMC free article] [PubMed]
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007181/gg2139sup1.cif

e-70-0o520-sup1.cif (19.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007181/gg2139Isup2.hkl

e-70-0o520-Isup2.hkl (186.8KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007181/gg2139Isup3.cml

CCDC reference: 994776

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES