Abstract
In the title compound, C10H5ClO3, a chlorinated 3-formylchromone derivative, the non-H atoms are essentially coplanar (r.m.s. deviation = 0.0456 Å) with the largest deviation from the least-squares plane [0.1136 (16) Å] being found for the ring-bound carbonyl O atom. In the crystal, molecules are linked through stacking interactions along the b axis [shortest centroid–centroid distance between the pyran and benzene rings = 3.4959 (15) Å].
Related literature
For related structures, see: Ishikawa & Motohashi (2013 ▶); Ishikawa (2014 ▶). For van der Waals radii; see: Bondi (1964 ▶). For halogen bonding, see: Auffinger et al. (2004 ▶); Metrangolo et al. (2005 ▶); Sirimulla et al. (2013 ▶).
Experimental
Crystal data
C10H5ClO3
M r = 208.60
Triclinic,
a = 6.5838 (16) Å
b = 6.9579 (17) Å
c = 10.265 (3) Å
α = 71.22 (3)°
β = 85.64 (2)°
γ = 69.29 (3)°
V = 416.0 (2) Å3
Z = 2
Mo Kα radiation
μ = 0.43 mm−1
T = 100 K
0.36 × 0.25 × 0.12 mm
Data collection
Rigaku AFC-7R diffractometer
Absorption correction: ψ scan (North et al., 1968 ▶) T min = 0.891, T max = 0.950
2356 measured reflections
1906 independent reflections
1741 reflections with F 2 > 2σ(F 2)
R int = 0.058
3 standard reflections every 150 reflections intensity decay: −0.9%
Refinement
R[F 2 > 2σ(F 2)] = 0.040
wR(F 2) = 0.109
S = 1.10
1906 reflections
127 parameters
H-atom parameters constrained
Δρmax = 0.29 e Å−3
Δρmin = −0.64 e Å−3
Data collection: WinAFC Diffractometer Control Software (Rigaku, 1999 ▶); cell refinement: WinAFC Diffractometer Control Software; data reduction: WinAFC Diffractometer Control Software; program(s) used to solve structure: SIR88 (Burla et al., 1989 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: CrystalStructure (Rigaku, 2010 ▶); software used to prepare material for publication: CrystalStructure.
Supplementary Material
Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536814007119/tk5303sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007119/tk5303Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814007119/tk5303Isup3.cml
CCDC reference: 994454
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The author acknowledges the University of Shizuoka for instrumental support.
supplementary crystallographic information
1. Structural commentary
Halogen bonds have been found to occur in organic, inorganic and biological systems, and have recently attracted much attention in medicinal chemistry, chemical biology and supramolecular chemistry (Auffinger et al., 2004; Metrangolo et al., 2005; Sirimulla et al., 2013). We have recently reported the crystal structures of dihalogenated 3-formylchromone derivatives 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013; Fig. 2 (top)) and 6,8-dibromo-4-oxochromene-3-carbaldehyde (Ishikawa, 2014). It was found that similar halogen bonds between the formyl oxygen atom and the halogen atoms at the 8-position are formed in those crystal structures. As part of our interest in this type of chemical bonding, we herein report the crystal structure of a monochlorinated 3-formylchromone derivative, 6-chloro-4-oxo-4H-chromene-3-carbaldehyde. The objective of this study is to reveal whether halogen bond(s) can be formed in the crystal structure of this compound without halogen atom at 8-position.
The mean deviation of the least-square planes for the non-hydrogen atoms is 0.0456 Å, and the largest deviations is 0.1136 (16) Å for O2. These mean that these atoms are essentially coplanar.
In the crystal, the molecules are stacked with the inversion-symmetry equivalents along the b-axis direction [centroid–centroid distance between the pyran rings of the 4H-chromene units = 3.926 (2) Å, i: -x + 2, -y + 1, -z + 1], as shown in Fig. 1. The distance between the chloride atom and the formyl oxygen atom of the translation-symmetry equivalent [Cl1···O3ii = 3.284 (2) Å, ii: x + 1, y, z - 1] is approximately equal to the sum of their van der Waals radii [3.27 Å] (Bondi, 1964), as shown in the middle of Fig. 2. Thus, it is concluded that there is no halogen bond in the title compound. The C–Cl···O and Cl···O=C angles are 166.30 (8) and 166.69 (14)°, respectively. The latter angle is greater than that of 6,8-dichloro-4-oxochromene-3-carbaldehyde (Ishikawa & Motohashi, 2013). A structure with halogen bonds can be modeled for the title compound (Fig.2, bottom), but it is not observed in the crystal. These results might be invaluable for the development of state-of-the-art force fields.
2. Synthesis and crystallization
Single crystals suitable for X-ray diffraction were obtained by slow evaporation of an ethyl acetate solution of the commercially available title compound at room temperature.
3. Refinement
The C(sp2)-bound hydrogen atoms were placed in geometrical positions [C–H 0.95 Å, Uiso(H) = 1.2Ueq(C)], and refined using a riding model. One reflection (1 8 2) was omitted because of systematic error.
Figures
Fig. 1.
A packing view of the title compound, with displacement ellipsoids drawn at the 50% probability level. Hydrogen atoms are shown as small spheres of arbitrary radius.
Fig. 2.
Sphere models of the crystal structures of 6,8-dichloro-4-oxochromene-3-carbaldehyde (top) and the title compound (middle), and an illustration of a hypothetical model of the title compound with halogen bonds (bottom).
Crystal data
| C10H5ClO3 | Z = 2 |
| Mr = 208.60 | F(000) = 212.00 |
| Triclinic, P1 | Dx = 1.665 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
| a = 6.5838 (16) Å | Cell parameters from 25 reflections |
| b = 6.9579 (17) Å | θ = 15.3–17.2° |
| c = 10.265 (3) Å | µ = 0.43 mm−1 |
| α = 71.22 (3)° | T = 100 K |
| β = 85.64 (2)° | Plate, colourless |
| γ = 69.29 (3)° | 0.36 × 0.25 × 0.12 mm |
| V = 416.0 (2) Å3 |
Data collection
| Rigaku AFC-7R diffractometer | Rint = 0.058 |
| ω–2θ scans | θmax = 27.5° |
| Absorption correction: ψ scan (North et al., 1968) | h = −4→8 |
| Tmin = 0.891, Tmax = 0.950 | k = −8→9 |
| 2356 measured reflections | l = −13→13 |
| 1906 independent reflections | 3 standard reflections every 150 reflections |
| 1741 reflections with F2 > 2σ(F2) | intensity decay: −0.9% |
Refinement
| Refinement on F2 | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.109 | H-atom parameters constrained |
| S = 1.10 | w = 1/[σ2(Fo2) + (0.0651P)2 + 0.1805P] where P = (Fo2 + 2Fc2)/3 |
| 1906 reflections | (Δ/σ)max < 0.001 |
| 127 parameters | Δρmax = 0.29 e Å−3 |
| 0 restraints | Δρmin = −0.64 e Å−3 |
| Primary atom site location: structure-invariant direct methods |
Special details
| Refinement. Refinement was performed using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Cl1 | 1.39536 (6) | 0.20927 (6) | 0.08023 (4) | 0.01987 (16) | |
| O1 | 0.69076 (17) | 0.31098 (18) | 0.46559 (11) | 0.0144 (3) | |
| O2 | 1.29992 (18) | 0.1926 (2) | 0.61081 (12) | 0.0182 (3) | |
| O3 | 0.7968 (2) | 0.2432 (3) | 0.87417 (12) | 0.0239 (3) | |
| C1 | 0.7314 (3) | 0.2807 (3) | 0.59818 (15) | 0.0136 (3) | |
| C2 | 0.9290 (3) | 0.2401 (3) | 0.65261 (15) | 0.0131 (3) | |
| C3 | 1.1186 (3) | 0.2214 (3) | 0.56792 (15) | 0.0126 (3) | |
| C4 | 1.2409 (3) | 0.2179 (3) | 0.33066 (15) | 0.0139 (3) | |
| C5 | 1.1898 (3) | 0.2441 (3) | 0.19633 (15) | 0.0148 (3) | |
| C6 | 0.9759 (3) | 0.2980 (3) | 0.15125 (16) | 0.0166 (4) | |
| C7 | 0.8106 (3) | 0.3239 (3) | 0.24213 (16) | 0.0159 (4) | |
| C8 | 1.0736 (3) | 0.2431 (3) | 0.42402 (15) | 0.0120 (3) | |
| C9 | 0.8618 (3) | 0.2926 (3) | 0.37834 (15) | 0.0129 (3) | |
| C10 | 0.9496 (3) | 0.2130 (3) | 0.80066 (16) | 0.0169 (4) | |
| H1 | 0.6135 | 0.2881 | 0.6580 | 0.0163* | |
| H2 | 1.3869 | 0.1834 | 0.3594 | 0.0167* | |
| H3 | 0.9443 | 0.3168 | 0.0582 | 0.0200* | |
| H4 | 0.6643 | 0.3625 | 0.2123 | 0.0191* | |
| H5 | 1.0911 | 0.1694 | 0.8402 | 0.0202* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Cl1 | 0.0190 (3) | 0.0257 (3) | 0.0136 (3) | −0.00517 (16) | 0.00438 (14) | −0.00820 (15) |
| O1 | 0.0101 (5) | 0.0183 (6) | 0.0134 (5) | −0.0037 (4) | −0.0001 (4) | −0.0044 (4) |
| O2 | 0.0125 (5) | 0.0268 (6) | 0.0158 (6) | −0.0066 (5) | −0.0007 (4) | −0.0074 (5) |
| O3 | 0.0222 (6) | 0.0358 (8) | 0.0180 (6) | −0.0114 (6) | 0.0065 (5) | −0.0141 (6) |
| C1 | 0.0137 (7) | 0.0133 (7) | 0.0130 (7) | −0.0036 (6) | 0.0010 (5) | −0.0043 (6) |
| C2 | 0.0133 (7) | 0.0141 (7) | 0.0124 (7) | −0.0041 (6) | 0.0004 (6) | −0.0056 (6) |
| C3 | 0.0127 (7) | 0.0115 (7) | 0.0136 (7) | −0.0034 (6) | −0.0002 (6) | −0.0047 (6) |
| C4 | 0.0137 (7) | 0.0133 (7) | 0.0142 (7) | −0.0039 (6) | 0.0003 (6) | −0.0044 (6) |
| C5 | 0.0176 (8) | 0.0133 (7) | 0.0132 (7) | −0.0047 (6) | 0.0022 (6) | −0.0049 (6) |
| C6 | 0.0220 (8) | 0.0154 (7) | 0.0118 (7) | −0.0064 (6) | −0.0017 (6) | −0.0031 (6) |
| C7 | 0.0160 (7) | 0.0164 (7) | 0.0142 (7) | −0.0050 (6) | −0.0042 (6) | −0.0029 (6) |
| C8 | 0.0132 (7) | 0.0110 (7) | 0.0111 (7) | −0.0037 (6) | −0.0001 (6) | −0.0031 (5) |
| C9 | 0.0136 (7) | 0.0119 (7) | 0.0124 (7) | −0.0038 (6) | 0.0005 (6) | −0.0033 (6) |
| C10 | 0.0189 (8) | 0.0189 (8) | 0.0140 (7) | −0.0066 (6) | 0.0010 (6) | −0.0068 (6) |
Geometric parameters (Å, º)
| Cl1—C5 | 1.7377 (17) | C4—C8 | 1.405 (3) |
| O1—C1 | 1.341 (2) | C5—C6 | 1.397 (3) |
| O1—C9 | 1.3802 (19) | C6—C7 | 1.379 (3) |
| O2—C3 | 1.230 (3) | C7—C9 | 1.393 (3) |
| O3—C10 | 1.210 (2) | C8—C9 | 1.392 (3) |
| C1—C2 | 1.354 (3) | C1—H1 | 0.950 |
| C2—C3 | 1.457 (3) | C4—H2 | 0.950 |
| C2—C10 | 1.481 (3) | C6—H3 | 0.950 |
| C3—C8 | 1.478 (3) | C7—H4 | 0.950 |
| C4—C5 | 1.383 (3) | C10—H5 | 0.950 |
| O1···C3 | 2.866 (3) | C4···H3 | 3.2782 |
| O2···C1 | 3.578 (3) | C5···H4 | 3.2649 |
| O2···C4 | 2.872 (3) | C6···H2 | 3.2829 |
| O2···C10 | 2.898 (3) | C8···H4 | 3.2890 |
| O3···C1 | 2.812 (3) | C9···H1 | 3.1907 |
| C1···C7 | 3.582 (3) | C9···H2 | 3.2715 |
| C1···C8 | 2.759 (3) | C9···H3 | 3.2493 |
| C2···C9 | 2.769 (3) | C10···H1 | 2.5487 |
| C4···C7 | 2.807 (3) | H1···H5 | 3.4825 |
| C5···C9 | 2.747 (3) | H3···H4 | 2.3384 |
| C6···C8 | 2.795 (3) | Cl1···H3xi | 3.1849 |
| Cl1···O3i | 3.2840 (16) | Cl1···H4vi | 2.9565 |
| O1···O1ii | 3.1591 (18) | Cl1···H4xi | 3.4118 |
| O1···O2iii | 3.1063 (19) | Cl1···H5x | 3.4268 |
| O1···O2iv | 3.309 (3) | Cl1···H5vii | 3.4313 |
| O1···C1ii | 3.118 (2) | O1···H1ii | 2.7492 |
| O1···C3v | 3.589 (3) | O1···H2iii | 2.8618 |
| O1···C4v | 3.484 (3) | O1···H2v | 3.5281 |
| O1···C8v | 3.432 (2) | O2···H1vi | 2.5039 |
| O2···O1vi | 3.1063 (19) | O2···H2vii | 2.6366 |
| O2···O1iv | 3.309 (3) | O3···H3ix | 2.4552 |
| O2···C1vi | 3.096 (3) | O3···H3v | 3.5089 |
| O2···C1iv | 3.543 (3) | O3···H4ii | 3.2371 |
| O2···C4vii | 3.274 (2) | O3···H5xii | 3.2852 |
| O2···C9iv | 3.394 (3) | C1···H1ii | 3.4760 |
| O3···Cl1viii | 3.2840 (16) | C1···H2v | 3.4704 |
| O3···C4iv | 3.590 (3) | C3···H2vii | 3.4084 |
| O3···C5iv | 3.436 (3) | C4···H1v | 3.2703 |
| O3···C6ix | 3.339 (3) | C4···H4vi | 3.3076 |
| C1···O1ii | 3.118 (2) | C5···H1v | 3.3113 |
| C1···O2iii | 3.096 (3) | C5···H3xi | 3.2003 |
| C1···O2iv | 3.543 (3) | C5···H4vi | 3.5285 |
| C1···C4v | 3.247 (3) | C6···H3xi | 3.0323 |
| C1···C5v | 3.452 (3) | C6···H5x | 3.5441 |
| C1···C8v | 3.487 (3) | C6···H5v | 3.4065 |
| C2···C4iv | 3.592 (3) | C7···H1ii | 3.4852 |
| C2···C5v | 3.562 (3) | C7···H2iii | 3.2936 |
| C2···C6v | 3.485 (3) | C9···H1ii | 3.3852 |
| C2···C7v | 3.507 (3) | C9···H2iii | 3.5013 |
| C2···C8iv | 3.418 (3) | C10···H3ix | 2.9512 |
| C2···C9v | 3.580 (3) | C10···H3v | 3.3274 |
| C3···O1v | 3.589 (3) | H1···O1ii | 2.7492 |
| C3···C3iv | 3.461 (3) | H1···O2iii | 2.5039 |
| C3···C7v | 3.541 (3) | H1···C1ii | 3.4760 |
| C3···C8iv | 3.512 (3) | H1···C4v | 3.2703 |
| C3···C9v | 3.395 (3) | H1···C5v | 3.3113 |
| C4···O1v | 3.484 (3) | H1···C7ii | 3.4852 |
| C4···O2vii | 3.274 (2) | H1···C9ii | 3.3852 |
| C4···O3iv | 3.590 (3) | H1···H1ii | 3.5933 |
| C4···C1v | 3.247 (3) | H1···H2v | 3.3433 |
| C4···C2iv | 3.592 (3) | H1···H4ii | 3.0973 |
| C4···C10iv | 3.518 (3) | H2···O1vi | 2.8618 |
| C5···O3iv | 3.436 (3) | H2···O1v | 3.5281 |
| C5···C1v | 3.452 (3) | H2···O2vii | 2.6366 |
| C5···C2v | 3.562 (3) | H2···C1v | 3.4704 |
| C5···C10v | 3.600 (3) | H2···C3vii | 3.4084 |
| C5···C10iv | 3.568 (3) | H2···C7vi | 3.2936 |
| C6···O3x | 3.339 (3) | H2···C9vi | 3.5013 |
| C6···C2v | 3.485 (3) | H2···H1v | 3.3433 |
| C6···C6xi | 3.536 (3) | H2···H2vii | 3.2073 |
| C6···C10v | 3.287 (3) | H2···H4vi | 2.6733 |
| C7···C2v | 3.507 (3) | H3···Cl1xi | 3.1849 |
| C7···C3v | 3.541 (3) | H3···O3x | 2.4552 |
| C8···O1v | 3.432 (2) | H3···O3v | 3.5089 |
| C8···C1v | 3.487 (3) | H3···C5xi | 3.2003 |
| C8···C2iv | 3.418 (3) | H3···C6xi | 3.0323 |
| C8···C3iv | 3.512 (3) | H3···C10x | 2.9512 |
| C8···C9v | 3.512 (3) | H3···C10v | 3.3274 |
| C9···O2iv | 3.394 (3) | H3···H3xi | 2.7733 |
| C9···C2v | 3.580 (3) | H3···H5x | 2.7277 |
| C9···C3v | 3.395 (3) | H3···H5v | 3.2917 |
| C9···C8v | 3.512 (3) | H4···Cl1iii | 2.9565 |
| C10···C4iv | 3.518 (3) | H4···Cl1xi | 3.4118 |
| C10···C5v | 3.600 (3) | H4···O3ii | 3.2371 |
| C10···C5iv | 3.568 (3) | H4···C4iii | 3.3076 |
| C10···C6v | 3.287 (3) | H4···C5iii | 3.5285 |
| Cl1···H2 | 2.8098 | H4···H1ii | 3.0973 |
| Cl1···H3 | 2.8018 | H4···H2iii | 2.6733 |
| O1···H4 | 2.5183 | H5···Cl1ix | 3.4268 |
| O2···H2 | 2.6171 | H5···Cl1vii | 3.4313 |
| O2···H5 | 2.6235 | H5···O3xii | 3.2852 |
| O3···H1 | 2.4841 | H5···C6ix | 3.5441 |
| C1···H5 | 3.2768 | H5···C6v | 3.4065 |
| C3···H1 | 3.2936 | H5···H3ix | 2.7277 |
| C3···H2 | 2.6894 | H5···H3v | 3.2917 |
| C3···H5 | 2.7009 | ||
| C1—O1—C9 | 118.51 (13) | C4—C8—C9 | 118.86 (15) |
| O1—C1—C2 | 124.50 (14) | O1—C9—C7 | 116.07 (15) |
| C1—C2—C3 | 120.89 (15) | O1—C9—C8 | 122.03 (15) |
| C1—C2—C10 | 118.68 (14) | C7—C9—C8 | 121.89 (15) |
| C3—C2—C10 | 120.43 (15) | O3—C10—C2 | 123.81 (16) |
| O2—C3—C2 | 123.55 (15) | O1—C1—H1 | 117.750 |
| O2—C3—C8 | 122.50 (14) | C2—C1—H1 | 117.752 |
| C2—C3—C8 | 113.94 (14) | C5—C4—H2 | 120.520 |
| C5—C4—C8 | 118.97 (15) | C8—C4—H2 | 120.513 |
| Cl1—C5—C4 | 119.56 (13) | C5—C6—H3 | 120.086 |
| Cl1—C5—C6 | 118.90 (13) | C7—C6—H3 | 120.081 |
| C4—C5—C6 | 121.54 (15) | C6—C7—H4 | 120.563 |
| C5—C6—C7 | 119.83 (16) | C9—C7—H4 | 120.557 |
| C6—C7—C9 | 118.88 (16) | O3—C10—H5 | 118.090 |
| C3—C8—C4 | 121.17 (15) | C2—C10—H5 | 118.097 |
| C3—C8—C9 | 119.97 (14) | ||
| C1—O1—C9—C7 | 179.49 (13) | C8—C4—C5—Cl1 | −178.97 (13) |
| C1—O1—C9—C8 | 0.2 (2) | C8—C4—C5—C6 | 1.0 (3) |
| C9—O1—C1—C2 | 2.4 (3) | H2—C4—C5—Cl1 | 1.0 |
| C9—O1—C1—H1 | −177.6 | H2—C4—C5—C6 | −179.0 |
| O1—C1—C2—C3 | −1.4 (3) | H2—C4—C8—C3 | 1.3 |
| O1—C1—C2—C10 | 179.14 (13) | H2—C4—C8—C9 | −179.7 |
| H1—C1—C2—C3 | 178.6 | Cl1—C5—C6—C7 | 179.23 (11) |
| H1—C1—C2—C10 | −0.9 | Cl1—C5—C6—H3 | −0.8 |
| C1—C2—C3—O2 | 177.29 (15) | C4—C5—C6—C7 | −0.7 (3) |
| C1—C2—C3—C8 | −2.0 (2) | C4—C5—C6—H3 | 179.3 |
| C1—C2—C10—O3 | −6.6 (3) | C5—C6—C7—C9 | −0.8 (3) |
| C1—C2—C10—H5 | 173.4 | C5—C6—C7—H4 | 179.1 |
| C3—C2—C10—O3 | 173.91 (15) | H3—C6—C7—C9 | 179.1 |
| C3—C2—C10—H5 | −6.1 | H3—C6—C7—H4 | −0.9 |
| C10—C2—C3—O2 | −3.3 (3) | C6—C7—C9—O1 | −177.08 (14) |
| C10—C2—C3—C8 | 177.49 (13) | C6—C7—C9—C8 | 2.2 (3) |
| O2—C3—C8—C4 | 4.1 (3) | H4—C7—C9—O1 | 2.9 |
| O2—C3—C8—C9 | −174.93 (14) | H4—C7—C9—C8 | −177.8 |
| C2—C3—C8—C4 | −176.66 (13) | C3—C8—C9—O1 | −3.7 (3) |
| C2—C3—C8—C9 | 4.3 (2) | C3—C8—C9—C7 | 177.13 (13) |
| C5—C4—C8—C3 | −178.70 (13) | C4—C8—C9—O1 | 177.30 (14) |
| C5—C4—C8—C9 | 0.3 (3) | C4—C8—C9—C7 | −1.9 (3) |
Symmetry codes: (i) x+1, y, z−1; (ii) −x+1, −y+1, −z+1; (iii) x−1, y, z; (iv) −x+2, −y+1, −z+1; (v) −x+2, −y, −z+1; (vi) x+1, y, z; (vii) −x+3, −y, −z+1; (viii) x−1, y, z+1; (ix) x, y, z+1; (x) x, y, z−1; (xi) −x+2, −y+1, −z; (xii) −x+2, −y, −z+2.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: TK5303).
References
- Auffinger, P., Hays, F. A., Westhof, E. & Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789–16794. [DOI] [PMC free article] [PubMed]
- Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
- Burla, M. C., Camalli, M., Cascarano, G., Giacovazzo, C., Polidori, G., Spagna, R. & Viterbo, D. (1989). J. Appl. Cryst. 22, 389–393.
- Ishikawa, Y. (2014). Acta Cryst. E70, o439. [DOI] [PMC free article] [PubMed]
- Ishikawa, Y. & Motohashi, Y. (2013). Acta Cryst. E69, o1416. [DOI] [PMC free article] [PubMed]
- Metrangolo, P., Neukirch, H., Pilati, T. & Resnati, G. (2005). Acc. Chem. Res. 38, 386–395. [DOI] [PubMed]
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351–359.
- Rigaku (1999). WinAFC Diffractometer Control Software Rigaku Corporation, Tokyo, Japan.
- Rigaku (2010). CrystalStructure Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sirimulla, S., Bailey, J. B., Vegesna, R. & Narayan, M. (2013). J. Chem. Inf. Model. 53, 2781–2791. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) General, I. DOI: 10.1107/S1600536814007119/tk5303sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007119/tk5303Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814007119/tk5303Isup3.cml
CCDC reference: 994454
Additional supporting information: crystallographic information; 3D view; checkCIF report


