Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 2;70(Pt 5):o512. doi: 10.1107/S1600536814006588

Ethyl trans-12-(pyridin-4-yl)-9,10-ethano­anthracene-11-carboxyl­ate

S Chandrasekar a, Prakash Sharma Om a, V Srinivasapriyan b, M SureshKumar a,*, C R Ramanathan b
PMCID: PMC4011267  PMID: 24860327

Abstract

In the title compound, C24H21NO2, the residues at the central ethyl­ene bridge are trans to each other. The dihedral angles between the pyridine and benzene rings are 67.09 (6) and 61.41 (5)°. In the crystal, centrosymmetrically related mol­ecules are linked into dimers by pairs of C—H⋯O hydrogen bonds.

Related literature  

For the biological activity of ester derivatives, see: Bi et al. (2012); Bartzatt et al. (2004); Anadu et al. (2006). For conformation studies, see: Nardelli (1983). For a related structure, see: Gnanamani & Ramanathan (2009).graphic file with name e-70-0o512-scheme1.jpg

Experimental  

Crystal data  

  • C24H21NO2

  • M r = 355.42

  • Monoclinic, Inline graphic

  • a = 10.1733 (19) Å

  • b = 11.156 (2) Å

  • c = 16.361 (3) Å

  • β = 90.877 (3)°

  • V = 1856.6 (6) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 298 K

  • 0.40 × 0.38 × 0.20 mm

Data collection  

  • Oxford Diffraction Xcalibur Eos diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) T min = 0.969, T max = 0.984

  • 18677 measured reflections

  • 3664 independent reflections

  • 3105 reflections with I > 2σ(I)

  • R int = 0.027

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.046

  • wR(F 2) = 0.118

  • S = 1.05

  • 3664 reflections

  • 245 parameters

  • H-atom parameters constrained

  • Δρmax = 0.17 e Å−3

  • Δρmin = −0.25 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2010); cell refinement: CrysAlis RED (Oxford Diffraction, 2010); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, 2R. DOI: 10.1107/S1600536814006588/bt6931sup1.cif

e-70-0o512-sup1.cif (28.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006588/bt6931Isup2.hkl

e-70-0o512-Isup2.hkl (179.7KB, hkl)

CCDC reference: 993524

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18⋯O1i 0.93 2.55 3.2612 (18) 134

Symmetry code: (i) Inline graphic.

Acknowledgments

CRR thanks DST–FIST for the single-crystal X-ray facility at the Department of Chemistry, Pondicherry University, Pondicherry.

supplementary crystallographic information

1. Comment

Ester derivatives of many compounds exhibit a variety of pharmacological properties, for example anticancer, antitumor and antimicrobial activities (Anadu et al., 2006; Bi et al., 2012; Bartzatt et al., 2004). In view of their importance, the title compound was synthesized and we report herein on its crystal structure. In the title molecule (Fig. 1) the fused tricyclic rings [DS (C7) = 0.0051 (1) Å and D2 (C7—C6) = 0.2248 (1) Å], [DS (C7) = 0.0135 (8) Å and D2 (C7—C6) = 0.2358 (6) Å] and [DS (C7) = 0.0126 (9) Å and D2 (C7—C6) = 0.2543 (7) Å] adopt a boat conformation which can be defined by the above asymmetry parameters (Nardelli, 1983). The torsion angles H7—C7—C8—H8 = -65.81 (15)° and H8—C8—C9—H9 = 129.38 (12)°, define the ring fusions involving the fused tricyclic ring system of the ethanoanthracene moeity. The C22—O1 distance [1.326 (2) Å] shows a partial double-bond character and so the C23 maintains planarity with C22, O2 and C9. In the crystal, pairs of centrosymmetrically related molecules are linked into dimers by C18—H18···O1 hydrogen bonds (Fig. 2).

2. Experimental

Anthracene (5.34 g, 30 mmol) and 3-(pyridine-4-yl)-acrylic acid ethyl ester (4.4g, 25 mmol) were taken in round bottom flask containing distilled dichloromethane (100 ml). To this mixture anhydrous AlCl3 (6.6 g, 50 mmol) was added and stirred at 0 °C for 48 h followed by stirring the reaction mixture at room temperature for 10 h. The obtained dark black solution was poured into water, the organic layer was separated and the aqueous layer was extracted with ether. The crude material was purified through column chromatography using hexane and ethyl acetate in the ratio of 9:1 as eluent. Yield: 5.7 g, (65%).

3. Refinement

All H atoms were positioned geometrically, with C–H = 0.93–0.97 Å and constrained to ride on their parent atom,with Uiso(H) =1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, Displacement ellipsoids are drawn at the 30% probability level, H atoms have been omitted for clarity.

Fig. 2.

Fig. 2.

Crystal packing of the title compound, Hydrogen bonds are shown as dashed lines. For the sake of clarity, H atoms not involved in the interactions have been omitted.

Crystal data

C24H21NO2 F(000) = 752
Mr = 355.42 Dx = 1.272 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 9754 reflections
a = 10.1733 (19) Å θ = 2.2–26.0°
b = 11.156 (2) Å µ = 0.08 mm1
c = 16.361 (3) Å T = 298 K
β = 90.877 (3)° Block, colourless
V = 1856.6 (6) Å3 0.40 × 0.38 × 0.20 mm
Z = 4

Data collection

Oxford Diffraction Xcalibur Eos diffractometer 3664 independent reflections
Radiation source: fine-focus sealed tube 3105 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 15.9821 pixels mm-1 θmax = 26.1°, θmin = 2.0°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) k = −13→13
Tmin = 0.969, Tmax = 0.984 l = −20→20
18677 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0561P)2 + 0.4341P] where P = (Fo2 + 2Fc2)/3
3664 reflections (Δ/σ)max < 0.001
245 parameters Δρmax = 0.17 e Å3
0 restraints Δρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.59145 (13) 0.92171 (12) 0.85231 (8) 0.0392 (3)
C2 0.46282 (15) 0.90612 (15) 0.82600 (10) 0.0502 (4)
H2 0.4091 0.8500 0.8510 0.060*
C3 0.41498 (17) 0.97553 (18) 0.76167 (12) 0.0649 (5)
H3 0.3289 0.9652 0.7430 0.078*
C4 0.49392 (19) 1.05918 (18) 0.72543 (11) 0.0685 (5)
H4 0.4610 1.1050 0.6823 0.082*
C5 0.62142 (17) 1.07578 (16) 0.75239 (10) 0.0565 (4)
H5 0.6739 1.1334 0.7280 0.068*
C6 0.67128 (14) 1.00685 (13) 0.81564 (8) 0.0407 (3)
C7 0.80801 (13) 1.01204 (13) 0.85311 (9) 0.0406 (3)
H7 0.8639 1.0697 0.8248 0.049*
C8 0.79534 (12) 1.04310 (11) 0.94622 (8) 0.0354 (3)
H8 0.8826 1.0330 0.9715 0.042*
C9 0.70331 (12) 0.95000 (12) 0.98565 (8) 0.0341 (3)
H9 0.6244 0.9919 1.0039 0.041*
C10 0.66015 (13) 0.85398 (12) 0.92048 (8) 0.0381 (3)
H10 0.6035 0.7923 0.9440 0.046*
C11 0.78412 (14) 0.80130 (13) 0.88616 (9) 0.0425 (3)
C12 0.86419 (14) 0.88680 (14) 0.85040 (9) 0.0442 (3)
C13 0.98283 (16) 0.85354 (18) 0.81716 (11) 0.0623 (5)
H13 1.0384 0.9106 0.7947 0.075*
C14 1.0172 (2) 0.7333 (2) 0.81801 (14) 0.0812 (7)
H14 1.0962 0.7096 0.7951 0.097*
C15 0.9370 (2) 0.6489 (2) 0.85202 (14) 0.0788 (7)
H15 0.9615 0.5686 0.8511 0.095*
C16 0.82018 (18) 0.68175 (15) 0.88763 (11) 0.0582 (5)
H16 0.7669 0.6247 0.9121 0.070*
C17 0.75608 (13) 1.17233 (12) 0.95790 (8) 0.0381 (3)
C18 0.62967 (14) 1.21560 (13) 0.94575 (10) 0.0475 (4)
H18 0.5619 1.1633 0.9316 0.057*
C19 0.60451 (16) 1.33606 (14) 0.95456 (11) 0.0568 (4)
H19 0.5186 1.3623 0.9461 0.068*
C20 0.81530 (19) 1.37470 (16) 0.98575 (15) 0.0766 (6)
H20 0.8812 1.4293 0.9993 0.092*
C21 0.85033 (16) 1.25592 (14) 0.97912 (12) 0.0578 (4)
H21 0.9368 1.2323 0.9889 0.069*
C22 0.76667 (13) 0.88949 (12) 1.05943 (8) 0.0371 (3)
C23 0.73365 (16) 0.73634 (15) 1.15837 (9) 0.0513 (4)
H23A 0.6605 0.7091 1.1909 0.062*
H23B 0.7918 0.7833 1.1933 0.062*
C24 0.8059 (2) 0.63115 (16) 1.12588 (11) 0.0657 (5)
H24A 0.7502 0.5882 1.0881 0.099*
H24B 0.8310 0.5792 1.1702 0.099*
H24C 0.8831 0.6581 1.0983 0.099*
N1 0.69472 (15) 1.41714 (12) 0.97428 (11) 0.0713 (5)
O1 0.68494 (10) 0.81027 (9) 1.09130 (6) 0.0474 (3)
O2 0.87508 (11) 0.90811 (11) 1.08561 (7) 0.0628 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0418 (7) 0.0369 (7) 0.0388 (7) 0.0032 (6) −0.0034 (6) −0.0068 (6)
C2 0.0442 (8) 0.0539 (9) 0.0522 (9) 0.0000 (7) −0.0074 (7) −0.0095 (7)
C3 0.0498 (9) 0.0783 (13) 0.0659 (11) 0.0112 (9) −0.0219 (8) −0.0064 (10)
C4 0.0721 (12) 0.0729 (12) 0.0598 (11) 0.0150 (10) −0.0192 (9) 0.0128 (9)
C5 0.0622 (10) 0.0562 (10) 0.0511 (9) 0.0068 (8) −0.0028 (8) 0.0117 (8)
C6 0.0442 (8) 0.0404 (7) 0.0374 (7) 0.0065 (6) −0.0001 (6) −0.0016 (6)
C7 0.0388 (7) 0.0416 (8) 0.0416 (7) 0.0001 (6) 0.0052 (6) 0.0039 (6)
C8 0.0302 (6) 0.0331 (7) 0.0428 (7) −0.0015 (5) −0.0013 (5) 0.0013 (6)
C9 0.0318 (6) 0.0324 (7) 0.0381 (7) −0.0005 (5) −0.0001 (5) −0.0011 (5)
C10 0.0406 (7) 0.0328 (7) 0.0408 (7) −0.0045 (5) −0.0042 (6) −0.0010 (6)
C11 0.0484 (8) 0.0386 (8) 0.0403 (7) 0.0069 (6) −0.0105 (6) −0.0065 (6)
C12 0.0421 (8) 0.0510 (9) 0.0393 (7) 0.0092 (6) −0.0030 (6) −0.0072 (6)
C13 0.0464 (9) 0.0837 (13) 0.0567 (10) 0.0132 (9) 0.0010 (7) −0.0188 (9)
C14 0.0606 (11) 0.1010 (17) 0.0817 (14) 0.0389 (12) −0.0100 (10) −0.0405 (13)
C15 0.0844 (14) 0.0631 (12) 0.0880 (14) 0.0378 (11) −0.0288 (12) −0.0299 (11)
C16 0.0730 (11) 0.0420 (9) 0.0589 (10) 0.0140 (8) −0.0235 (8) −0.0121 (7)
C17 0.0380 (7) 0.0338 (7) 0.0426 (7) −0.0026 (6) 0.0003 (6) 0.0013 (6)
C18 0.0387 (7) 0.0370 (8) 0.0668 (10) −0.0028 (6) −0.0044 (7) −0.0008 (7)
C19 0.0484 (9) 0.0404 (8) 0.0813 (12) 0.0056 (7) −0.0079 (8) −0.0006 (8)
C20 0.0603 (11) 0.0398 (9) 0.1291 (19) −0.0094 (8) −0.0204 (11) −0.0138 (10)
C21 0.0433 (8) 0.0423 (9) 0.0873 (13) −0.0028 (7) −0.0129 (8) −0.0065 (8)
C22 0.0372 (7) 0.0355 (7) 0.0385 (7) −0.0018 (5) −0.0013 (5) −0.0025 (6)
C23 0.0600 (9) 0.0524 (9) 0.0414 (8) −0.0006 (7) −0.0028 (7) 0.0126 (7)
C24 0.0885 (13) 0.0532 (10) 0.0555 (10) 0.0116 (9) 0.0022 (9) 0.0108 (8)
N1 0.0656 (10) 0.0358 (7) 0.1119 (14) 0.0022 (7) −0.0146 (9) −0.0070 (8)
O1 0.0444 (6) 0.0500 (6) 0.0476 (6) −0.0064 (5) −0.0044 (4) 0.0145 (5)
O2 0.0502 (7) 0.0725 (8) 0.0651 (7) −0.0186 (6) −0.0210 (5) 0.0209 (6)

Geometric parameters (Å, º)

C1—C2 1.382 (2) C13—C14 1.386 (3)
C1—C6 1.392 (2) C13—H13 0.9300
C1—C10 1.5097 (19) C14—C15 1.370 (3)
C2—C3 1.389 (2) C14—H14 0.9300
C2—H2 0.9300 C15—C16 1.381 (3)
C3—C4 1.372 (3) C15—H15 0.9300
C3—H3 0.9300 C16—H16 0.9300
C4—C5 1.376 (3) C17—C21 1.378 (2)
C4—H4 0.9300 C17—C18 1.385 (2)
C5—C6 1.380 (2) C18—C19 1.376 (2)
C5—H5 0.9300 C18—H18 0.9300
C6—C7 1.513 (2) C19—N1 1.325 (2)
C7—C12 1.510 (2) C19—H19 0.9300
C7—C8 1.5695 (19) C20—N1 1.326 (2)
C7—H7 0.9800 C20—C21 1.377 (2)
C8—C17 1.5089 (19) C20—H20 0.9300
C8—C9 1.5460 (17) C21—H21 0.9300
C8—H8 0.9800 C22—O2 1.1952 (17)
C9—C22 1.5180 (18) C22—O1 1.3258 (16)
C9—C10 1.5693 (18) C23—O1 1.4538 (17)
C9—H9 0.9800 C23—C24 1.487 (2)
C10—C11 1.508 (2) C23—H23A 0.9700
C10—H10 0.9800 C23—H23B 0.9700
C11—C16 1.383 (2) C24—H24A 0.9600
C11—C12 1.389 (2) C24—H24B 0.9600
C12—C13 1.382 (2) C24—H24C 0.9600
C2—C1—C6 120.50 (14) C13—C12—C7 126.37 (16)
C2—C1—C10 126.33 (13) C11—C12—C7 113.46 (12)
C6—C1—C10 113.17 (12) C12—C13—C14 118.5 (2)
C1—C2—C3 119.01 (16) C12—C13—H13 120.7
C1—C2—H2 120.5 C14—C13—H13 120.7
C3—C2—H2 120.5 C15—C14—C13 121.14 (18)
C4—C3—C2 120.41 (16) C15—C14—H14 119.4
C4—C3—H3 119.8 C13—C14—H14 119.4
C2—C3—H3 119.8 C14—C15—C16 120.74 (18)
C3—C4—C5 120.54 (16) C14—C15—H15 119.6
C3—C4—H4 119.7 C16—C15—H15 119.6
C5—C4—H4 119.7 C15—C16—C11 118.55 (19)
C4—C5—C6 119.96 (17) C15—C16—H16 120.7
C4—C5—H5 120.0 C11—C16—H16 120.7
C6—C5—H5 120.0 C21—C17—C18 116.18 (13)
C5—C6—C1 119.57 (14) C21—C17—C8 119.60 (13)
C5—C6—C7 127.44 (14) C18—C17—C8 124.18 (12)
C1—C6—C7 112.98 (12) C19—C18—C17 119.94 (14)
C12—C7—C6 107.38 (12) C19—C18—H18 120.0
C12—C7—C8 105.63 (11) C17—C18—H18 120.0
C6—C7—C8 108.25 (11) N1—C19—C18 124.26 (15)
C12—C7—H7 111.8 N1—C19—H19 117.9
C6—C7—H7 111.8 C18—C19—H19 117.9
C8—C7—H7 111.8 N1—C20—C21 124.93 (16)
C17—C8—C9 115.20 (11) N1—C20—H20 117.5
C17—C8—C7 111.08 (11) C21—C20—H20 117.5
C9—C8—C7 108.42 (10) C20—C21—C17 119.42 (15)
C17—C8—H8 107.3 C20—C21—H21 120.3
C9—C8—H8 107.3 C17—C21—H21 120.3
C7—C8—H8 107.3 O2—C22—O1 123.76 (13)
C22—C9—C8 112.21 (10) O2—C22—C9 125.88 (13)
C22—C9—C10 110.35 (11) O1—C22—C9 110.36 (11)
C8—C9—C10 109.87 (11) O1—C23—C24 110.02 (13)
C22—C9—H9 108.1 O1—C23—H23A 109.7
C8—C9—H9 108.1 C24—C23—H23A 109.7
C10—C9—H9 108.1 O1—C23—H23B 109.7
C11—C10—C1 107.48 (11) C24—C23—H23B 109.7
C11—C10—C9 106.99 (11) H23A—C23—H23B 108.2
C1—C10—C9 106.37 (11) C23—C24—H24A 109.5
C11—C10—H10 111.9 C23—C24—H24B 109.5
C1—C10—H10 111.9 H24A—C24—H24B 109.5
C9—C10—H10 111.9 C23—C24—H24C 109.5
C16—C11—C12 120.81 (15) H24A—C24—H24C 109.5
C16—C11—C10 126.33 (15) H24B—C24—H24C 109.5
C12—C11—C10 112.86 (12) C19—N1—C20 115.26 (14)
C13—C12—C11 120.17 (15) C22—O1—C23 117.80 (11)
C6—C1—C2—C3 0.9 (2) C16—C11—C12—C13 −1.3 (2)
C10—C1—C2—C3 −179.47 (14) C10—C11—C12—C13 178.93 (13)
C1—C2—C3—C4 −0.7 (3) C16—C11—C12—C7 178.95 (13)
C2—C3—C4—C5 −0.2 (3) C10—C11—C12—C7 −0.77 (17)
C3—C4—C5—C6 0.9 (3) C6—C7—C12—C13 126.43 (16)
C4—C5—C6—C1 −0.7 (2) C8—C7—C12—C13 −118.21 (16)
C4—C5—C6—C7 179.87 (16) C6—C7—C12—C11 −53.89 (15)
C2—C1—C6—C5 −0.2 (2) C8—C7—C12—C11 61.47 (14)
C10—C1—C6—C5 −179.89 (13) C11—C12—C13—C14 2.1 (2)
C2—C1—C6—C7 179.33 (13) C7—C12—C13—C14 −178.20 (15)
C10—C1—C6—C7 −0.36 (17) C12—C13—C14—C15 −1.0 (3)
C5—C6—C7—C12 −126.13 (16) C13—C14—C15—C16 −1.0 (3)
C1—C6—C7—C12 54.38 (15) C14—C15—C16—C11 1.8 (3)
C5—C6—C7—C8 120.26 (16) C12—C11—C16—C15 −0.6 (2)
C1—C6—C7—C8 −59.23 (15) C10—C11—C16—C15 179.04 (15)
C12—C7—C8—C17 172.86 (11) C9—C8—C17—C21 135.65 (15)
C6—C7—C8—C17 −72.38 (14) C7—C8—C17—C21 −100.59 (16)
C12—C7—C8—C9 −59.59 (13) C9—C8—C17—C18 −46.84 (19)
C6—C7—C8—C9 55.17 (14) C7—C8—C17—C18 76.93 (17)
C17—C8—C9—C22 −109.03 (13) C21—C17—C18—C19 0.4 (2)
C7—C8—C9—C22 125.81 (12) C8—C17—C18—C19 −177.20 (15)
C17—C8—C9—C10 127.81 (12) C17—C18—C19—N1 0.2 (3)
C7—C8—C9—C10 2.65 (14) N1—C20—C21—C17 1.0 (4)
C2—C1—C10—C11 125.88 (15) C18—C17—C21—C20 −0.9 (3)
C6—C1—C10—C11 −54.46 (15) C8—C17—C21—C20 176.79 (17)
C2—C1—C10—C9 −119.80 (15) C8—C9—C22—O2 −0.6 (2)
C6—C1—C10—C9 59.86 (14) C10—C9—C22—O2 122.24 (16)
C22—C9—C10—C11 −68.66 (14) C8—C9—C22—O1 −179.85 (11)
C8—C9—C10—C11 55.59 (14) C10—C9—C22—O1 −56.96 (14)
C22—C9—C10—C1 176.69 (11) C18—C19—N1—C20 −0.1 (3)
C8—C9—C10—C1 −59.07 (13) C21—C20—N1—C19 −0.4 (3)
C1—C10—C11—C16 −124.66 (15) O2—C22—O1—C23 −4.4 (2)
C9—C10—C11—C16 121.43 (15) C9—C22—O1—C23 174.85 (12)
C1—C10—C11—C12 55.04 (15) C24—C23—O1—C22 −83.74 (17)
C9—C10—C11—C12 −58.87 (15)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H18···O1i 0.93 2.55 3.2612 (18) 134

Symmetry code: (i) −x+1, −y+2, −z+2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6931).

References

  1. Anadu, N. O., Davisson, V. J. & Cushman, M. (2006). J. Med. Chem. 49, 3897–3905. [DOI] [PubMed]
  2. Bartzatt, R., Cirillo, S. L. & Cirillo, J. D. (2004). Physiol. Chem. Phys. Med. NMR, 36, 85–94. [PubMed]
  3. Bi, Y., Xu, J., Sun, F., Wu, X., Ye, W., Sun, Y. & Huang, W. (2012). Molecules, 17, 8832–8841. [DOI] [PMC free article] [PubMed]
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Gnanamani, E. & Ramanathan, C. R. (2009). Tetrahedron Asymmetry, 20, 2211–2215.
  6. Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  7. Oxford Diffraction (2010). CrysAlis PRO, CrysAlis RED and CrysAlis CCD . Oxford Diffraction Ltd, Yarnton, England.
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  9. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, 2R. DOI: 10.1107/S1600536814006588/bt6931sup1.cif

e-70-0o512-sup1.cif (28.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006588/bt6931Isup2.hkl

e-70-0o512-Isup2.hkl (179.7KB, hkl)

CCDC reference: 993524

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES