Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 26;70(Pt 5):o592. doi: 10.1107/S160053681400868X

5-Cyclo­pentyl-2-methyl-3-(4-methyl­phenyl­sulfon­yl)-1-benzo­furan

Hong Dae Choi a, Pil Ja Seo a, Uk Lee b,*
PMCID: PMC4011272  PMID: 24860390

Abstract

In the title compound, C21H22O3S, the cyclo­pentyl ring adopts a twist conformation. The dihedral angle between the mean planes of the benzo­furan and 4-methyl­phenyl rings is 72.38 (6)°. In the crystal, mol­ecules are linked by C—H⋯O and C—H⋯π inter­actions, forming a three-dimensional supra­molecular network.

Related literature  

For background information and the crystal structures of related compounds, see: Choi et al. (2012, 2014); Seo et al. (2011).graphic file with name e-70-0o592-scheme1.jpg

Experimental  

Crystal data  

  • C21H22O3S

  • M r = 354.45

  • Monoclinic, Inline graphic

  • a = 10.5452 (7) Å

  • b = 6.3093 (4) Å

  • c = 13.7813 (9) Å

  • β = 91.626 (4)°

  • V = 916.54 (10) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.19 mm−1

  • T = 173 K

  • 0.42 × 0.25 × 0.23 mm

Data collection  

  • Bruker SMART APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.636, T max = 0.746

  • 13479 measured reflections

  • 4144 independent reflections

  • 3276 reflections with I > 2σ(I)

  • R int = 0.031

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.043

  • wR(F 2) = 0.106

  • S = 1.02

  • 4144 reflections

  • 228 parameters

  • 2 restraints

  • H-atom parameters constrained

  • Δρmax = 0.27 e Å−3

  • Δρmin = −0.19 e Å−3

  • Absolute structure: Flack (1983), 2111 Friedel pairs

  • Absolute structure parameter: 0.02 (6)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 1998); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400868X/bt6977sup1.cif

e-70-0o592-sup1.cif (27.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400868X/bt6977Isup2.hkl

e-70-0o592-Isup2.hkl (203.1KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400868X/bt6977Isup3.cml

CCDC reference: 997753

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6⋯O3i 0.95 2.44 3.279 (3) 148
C20—H20⋯O2ii 0.95 2.54 3.244 (3) 131
C9—H9⋯Cg1iii 1.0 2.89 3.680 (3) 136
C12—H12BCg1iv 0.99 2.88 3.591 (3) 129
C14—H14CCg2ii 0.98 2.94 3.826 (3) 151

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

supplementary crystallographic information

1. Comment

As a part of our ongoing study of 5-cylcopentyl-2-methyl-1-benzofuran derivatives containing phenylsulfonyl (Seo et al., 2011), 4-bromophenylsulfonyl (Choi et al., 2012) and 3-methylphenylsulfonyl (Choi et al., 2014) substituents in the 3-position, we report here on the crystal structure of the title compound.

The title compound crystallizes in the non-centrosymmetric space group Pn.

In the title molecule (Fig. 1), the benzofuran ring is essentially planar, with a mean deviation of 0.011 (2) Å from the least-squares plane defined by the nine constituent atoms. The 4-methylphenyl ring is essentially planar, with a mean deviation of 0.004 (2) Å from the least-squares plane defined by the six constituent atoms. The cyclopentyl ring has a twist conformation. The dihedral angle formed by the benzofuran ring system and the 4-methylphenyl ring is 72.38 (6)°. In the crystal structure (Fig. 2), molecules are linked by C—H···O and C—H···π interactions (Table 1, Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively), resulting in a three-dimensional supramolecular network.

2. Experimental

3-Chloroperoxybenzoic acid (77%, 448 mg, 2.0 mmol) was added in small portions to a stirred solution of 5-cyclopentyl-2-methyl-3-(4-methylphenylsulfanyl)-1-benzofuran (290 mg, 0.9 mmol) in dichloromethane (40 mL) at 273 K. After being stirred at room temperature for 10h, the mixture was washed with saturated sodium bicarbonate solution and the organic layer was separated, dried over magnesium sulfate, filtered and concentrated at reduced pressure. The residue was purified by column chromatography (hexane–ethyl acetate, 4:1 v/v) to afford the title compound as a colorless solid [yield 70%, m.p. 398–399 K; Rf = 0.51 (hexane–ethyl acetate, 4:1 v/v)]. Single crystals suitable for X-ray diffraction were prepared by slow vaporation of a solution of the title compound in ethyl acetate at room temperature.

3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 Å for aryl, 1.00 Å for methine, 0.99 Å for methylene and 0.98 Å for methyl H atoms, respectively. Uiso (H) = 1.2Ueq (C) for aryl, methine and methylene, and 1.5Ueq (C) for methyl H atoms. The positions of methyl hydrogens were optimized using the SHELXL command AFIX 137 (Sheldrick, 2008).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title molecule with the atom numbering scheme The displacement ellipsoids are drawn at the 50% probability level. The hydrogen atoms are presented as small spheres of arbitrary radius.

Fig. 2.

Fig. 2.

A view of the C—H···O and C—H···π interactions (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen-bonding were omitted for clarity. [Symmetry codes: (i) x + 1/2, - y + 1, z - 1/2; (ii) x, y + 1, z; (iii) x, y - 1, z; (iv) x - 1/2, - y, z - 1/2; (v) x - 1/2, - y + 1, z + 1/2; (vi) x + 1/2, - y, z + 1/2.]

Crystal data

C21H22O3S F(000) = 376
Mr = 354.45 Dx = 1.284 Mg m3
Monoclinic, Pn Melting point = 399–398 K
Hall symbol: P -2yac Mo Kα radiation, λ = 0.71073 Å
a = 10.5452 (7) Å Cell parameters from 4626 reflections
b = 6.3093 (4) Å θ = 2.4–22.7°
c = 13.7813 (9) Å µ = 0.19 mm1
β = 91.626 (4)° T = 173 K
V = 916.54 (10) Å3 Block, colourless
Z = 2 0.42 × 0.25 × 0.23 mm

Data collection

Bruker SMART APEXII CCD diffractometer 4144 independent reflections
Radiation source: rotating anode 3276 reflections with I > 2σ(I)
Graphite multilayer monochromator Rint = 0.031
Detector resolution: 10.0 pixels mm-1 θmax = 27.5°, θmin = 2.4°
φ and ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −8→8
Tmin = 0.636, Tmax = 0.746 l = −17→17
13479 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0577P)2 + 0.0503P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4144 reflections Δρmax = 0.27 e Å3
228 parameters Δρmin = −0.19 e Å3
2 restraints Absolute structure: Flack (1983), 2111 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: 0.02 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.50057 (4) 0.43392 (9) 0.52665 (4) 0.04206 (17)
O1 0.81242 (17) 0.5370 (3) 0.38708 (14) 0.0529 (5)
O2 0.46721 (17) 0.2152 (3) 0.53932 (12) 0.0487 (5)
O3 0.52795 (18) 0.5621 (3) 0.61028 (12) 0.0545 (5)
C1 0.6301 (2) 0.4397 (4) 0.45279 (16) 0.0398 (6)
C2 0.6569 (2) 0.2858 (4) 0.37834 (16) 0.0376 (5)
C3 0.5997 (2) 0.1062 (4) 0.34016 (15) 0.0384 (5)
H3 0.5220 0.0571 0.3652 0.046*
C4 0.6558 (2) −0.0023 (4) 0.26530 (16) 0.0413 (5)
C5 0.7737 (2) 0.0714 (5) 0.23120 (18) 0.0509 (7)
H5 0.8134 −0.0044 0.1809 0.061*
C6 0.8315 (3) 0.2481 (5) 0.2687 (2) 0.0549 (7)
H6 0.9104 0.2961 0.2454 0.066*
C7 0.7714 (2) 0.3539 (4) 0.34139 (17) 0.0454 (6)
C8 0.7251 (2) 0.5865 (4) 0.45435 (18) 0.0461 (6)
C9 0.5876 (3) −0.1898 (4) 0.22067 (17) 0.0484 (7)
H9 0.5692 −0.2910 0.2743 0.058*
C10 0.6516 (3) −0.3141 (5) 0.1417 (2) 0.0678 (9)
H10A 0.6880 −0.2181 0.0930 0.081*
H10B 0.7198 −0.4056 0.1693 0.081*
C11 0.5457 (3) −0.4451 (5) 0.0973 (3) 0.0762 (10)
H11A 0.5624 −0.4774 0.0286 0.091*
H11B 0.5366 −0.5801 0.1331 0.091*
C12 0.4278 (4) −0.3131 (6) 0.1049 (3) 0.0920 (12)
H12A 0.3581 −0.3981 0.1319 0.110*
H12B 0.4001 −0.2596 0.0401 0.110*
C13 0.4621 (3) −0.1308 (6) 0.1718 (3) 0.0729 (9)
H13A 0.3962 −0.1109 0.2207 0.087*
H13B 0.4704 0.0022 0.1345 0.087*
C14 0.7537 (3) 0.7785 (5) 0.5121 (2) 0.0636 (8)
H14A 0.8248 0.7497 0.5575 0.095*
H14B 0.6789 0.8187 0.5485 0.095*
H14C 0.7764 0.8945 0.4686 0.095*
C15 0.3770 (2) 0.5572 (4) 0.45880 (16) 0.0404 (6)
C16 0.3159 (2) 0.4485 (4) 0.38343 (19) 0.0461 (6)
H16 0.3406 0.3077 0.3684 0.055*
C17 0.2205 (3) 0.5442 (4) 0.3310 (2) 0.0539 (7)
H17 0.1786 0.4687 0.2798 0.065*
C18 0.1836 (2) 0.7506 (4) 0.3514 (2) 0.0500 (6)
C19 0.2460 (3) 0.8554 (4) 0.4268 (2) 0.0526 (7)
H19 0.2212 0.9958 0.4424 0.063*
C20 0.3435 (3) 0.7610 (4) 0.47994 (19) 0.0478 (6)
H20 0.3868 0.8365 0.5305 0.057*
C21 0.0784 (3) 0.8560 (6) 0.2938 (3) 0.0746 (9)
H21A 0.1139 0.9335 0.2393 0.112*
H21B 0.0337 0.9552 0.3356 0.112*
H21C 0.0188 0.7483 0.2691 0.112*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0520 (4) 0.0414 (3) 0.0326 (3) −0.0023 (3) −0.0020 (2) −0.0036 (3)
O1 0.0435 (9) 0.0531 (12) 0.0617 (12) −0.0095 (9) −0.0069 (8) 0.0157 (9)
O2 0.0648 (13) 0.0421 (10) 0.0398 (9) −0.0044 (8) 0.0089 (8) 0.0024 (8)
O3 0.0726 (13) 0.0552 (12) 0.0354 (9) −0.0042 (10) −0.0064 (9) −0.0070 (8)
C1 0.0431 (13) 0.0395 (15) 0.0361 (12) −0.0023 (11) −0.0075 (10) 0.0059 (10)
C2 0.0370 (12) 0.0443 (14) 0.0312 (11) 0.0039 (11) −0.0035 (9) 0.0098 (10)
C3 0.0384 (12) 0.0453 (15) 0.0315 (11) 0.0076 (11) 0.0007 (9) 0.0075 (10)
C4 0.0455 (13) 0.0443 (13) 0.0339 (12) 0.0141 (11) −0.0009 (10) 0.0077 (10)
C5 0.0457 (15) 0.065 (2) 0.0422 (14) 0.0167 (14) 0.0082 (11) 0.0120 (13)
C6 0.0406 (14) 0.0626 (18) 0.0619 (17) 0.0033 (14) 0.0077 (12) 0.0175 (14)
C7 0.0388 (13) 0.0531 (16) 0.0440 (14) 0.0042 (12) −0.0034 (11) 0.0144 (11)
C8 0.0482 (14) 0.0455 (15) 0.0437 (14) −0.0018 (12) −0.0158 (12) 0.0130 (11)
C9 0.0685 (17) 0.0446 (16) 0.0321 (12) 0.0170 (14) 0.0002 (12) 0.0029 (10)
C10 0.082 (2) 0.068 (2) 0.0535 (17) 0.0207 (17) 0.0019 (15) −0.0204 (15)
C11 0.098 (3) 0.061 (2) 0.070 (2) 0.0043 (19) 0.0099 (19) −0.0236 (16)
C12 0.097 (3) 0.085 (3) 0.094 (3) 0.001 (2) −0.019 (2) −0.039 (2)
C13 0.0604 (19) 0.067 (2) 0.090 (2) 0.0147 (16) −0.0119 (17) −0.0254 (18)
C14 0.0721 (19) 0.0486 (17) 0.0683 (19) −0.0122 (14) −0.0286 (16) 0.0078 (14)
C15 0.0444 (14) 0.0401 (14) 0.0367 (12) −0.0002 (11) 0.0039 (11) −0.0027 (10)
C16 0.0471 (14) 0.0407 (15) 0.0503 (14) 0.0025 (12) −0.0025 (11) −0.0137 (12)
C17 0.0518 (16) 0.0543 (18) 0.0551 (16) 0.0000 (13) −0.0071 (13) −0.0132 (13)
C18 0.0458 (15) 0.0493 (16) 0.0549 (16) 0.0001 (12) 0.0008 (12) −0.0004 (13)
C19 0.0617 (17) 0.0404 (15) 0.0559 (16) 0.0057 (13) 0.0052 (13) −0.0074 (13)
C20 0.0610 (17) 0.0391 (15) 0.0433 (14) −0.0032 (12) 0.0030 (12) −0.0074 (11)
C21 0.0671 (19) 0.070 (2) 0.086 (2) 0.0110 (16) −0.0177 (17) 0.0013 (18)

Geometric parameters (Å, º)

S1—O3 1.4307 (17) C11—C12 1.502 (5)
S1—O2 1.4358 (18) C11—H11A 0.9900
S1—C1 1.727 (2) C11—H11B 0.9900
S1—C15 1.763 (2) C12—C13 1.512 (4)
O1—C8 1.362 (3) C12—H12A 0.9900
O1—C7 1.379 (3) C12—H12B 0.9900
C1—C8 1.364 (3) C13—H13A 0.9900
C1—C2 1.446 (3) C13—H13B 0.9900
C2—C3 1.381 (3) C14—H14A 0.9800
C2—C7 1.392 (3) C14—H14B 0.9800
C3—C4 1.385 (3) C14—H14C 0.9800
C3—H3 0.9500 C15—C20 1.367 (3)
C4—C5 1.419 (4) C15—C16 1.388 (3)
C4—C9 1.507 (4) C16—C17 1.363 (4)
C5—C6 1.365 (4) C16—H16 0.9500
C5—H5 0.9500 C17—C18 1.390 (4)
C6—C7 1.373 (4) C17—H17 0.9500
C6—H6 0.9500 C18—C19 1.383 (4)
C8—C14 1.476 (4) C18—C21 1.501 (4)
C9—C13 1.514 (4) C19—C20 1.381 (4)
C9—C10 1.515 (4) C19—H19 0.9500
C9—H9 1.0000 C20—H20 0.9500
C10—C11 1.505 (5) C21—H21A 0.9800
C10—H10A 0.9900 C21—H21B 0.9800
C10—H10B 0.9900 C21—H21C 0.9800
O3—S1—O2 119.33 (11) C12—C11—H11B 110.6
O3—S1—C1 108.55 (11) C10—C11—H11B 110.6
O2—S1—C1 107.01 (11) H11A—C11—H11B 108.7
O3—S1—C15 107.88 (11) C11—C12—C13 106.2 (3)
O2—S1—C15 107.98 (11) C11—C12—H12A 110.5
C1—S1—C15 105.24 (11) C13—C12—H12A 110.5
C8—O1—C7 107.06 (19) C11—C12—H12B 110.5
C8—C1—C2 108.0 (2) C13—C12—H12B 110.5
C8—C1—S1 126.7 (2) H12A—C12—H12B 108.7
C2—C1—S1 125.30 (17) C12—C13—C9 106.0 (3)
C3—C2—C7 119.2 (2) C12—C13—H13A 110.5
C3—C2—C1 136.8 (2) C9—C13—H13A 110.5
C7—C2—C1 104.0 (2) C12—C13—H13B 110.5
C2—C3—C4 119.9 (2) C9—C13—H13B 110.5
C2—C3—H3 120.1 H13A—C13—H13B 108.7
C4—C3—H3 120.1 C8—C14—H14A 109.5
C3—C4—C5 118.8 (3) C8—C14—H14B 109.5
C3—C4—C9 118.9 (2) H14A—C14—H14B 109.5
C5—C4—C9 122.3 (2) C8—C14—H14C 109.5
C6—C5—C4 121.9 (3) H14A—C14—H14C 109.5
C6—C5—H5 119.1 H14B—C14—H14C 109.5
C4—C5—H5 119.1 C20—C15—C16 120.5 (2)
C5—C6—C7 117.6 (3) C20—C15—S1 119.57 (18)
C5—C6—H6 121.2 C16—C15—S1 119.94 (19)
C7—C6—H6 121.2 C17—C16—C15 119.8 (2)
C6—C7—O1 126.5 (2) C17—C16—H16 120.1
C6—C7—C2 122.6 (3) C15—C16—H16 120.1
O1—C7—C2 110.8 (2) C16—C17—C18 121.0 (2)
O1—C8—C1 110.2 (2) C16—C17—H17 119.5
O1—C8—C14 115.0 (2) C18—C17—H17 119.5
C1—C8—C14 134.8 (3) C19—C18—C17 118.0 (2)
C4—C9—C13 112.9 (2) C19—C18—C21 120.9 (3)
C4—C9—C10 118.9 (3) C17—C18—C21 121.0 (3)
C13—C9—C10 102.1 (2) C20—C19—C18 121.6 (3)
C4—C9—H9 107.5 C20—C19—H19 119.2
C13—C9—H9 107.5 C18—C19—H19 119.2
C10—C9—H9 107.5 C15—C20—C19 119.1 (2)
C11—C10—C9 103.6 (3) C15—C20—H20 120.5
C11—C10—H10A 111.0 C19—C20—H20 120.5
C9—C10—H10A 111.0 C18—C21—H21A 109.5
C11—C10—H10B 111.0 C18—C21—H21B 109.5
C9—C10—H10B 111.0 H21A—C21—H21B 109.5
H10A—C10—H10B 109.0 C18—C21—H21C 109.5
C12—C11—C10 105.9 (3) H21A—C21—H21C 109.5
C12—C11—H11A 110.6 H21B—C21—H21C 109.5
C10—C11—H11A 110.6
O3—S1—C1—C8 −19.1 (2) C2—C1—C8—C14 −179.7 (3)
O2—S1—C1—C8 −149.1 (2) S1—C1—C8—C14 −0.3 (4)
C15—S1—C1—C8 96.2 (2) C3—C4—C9—C13 63.1 (3)
O3—S1—C1—C2 160.22 (18) C5—C4—C9—C13 −114.8 (3)
O2—S1—C1—C2 30.2 (2) C3—C4—C9—C10 −177.4 (2)
C15—S1—C1—C2 −84.5 (2) C5—C4—C9—C10 4.7 (3)
C8—C1—C2—C3 −178.8 (2) C4—C9—C10—C11 −165.3 (2)
S1—C1—C2—C3 1.8 (4) C13—C9—C10—C11 −40.4 (3)
C8—C1—C2—C7 1.1 (2) C9—C10—C11—C12 32.6 (4)
S1—C1—C2—C7 −178.34 (17) C10—C11—C12—C13 −11.8 (4)
C7—C2—C3—C4 −0.7 (3) C11—C12—C13—C9 −13.6 (4)
C1—C2—C3—C4 179.2 (2) C4—C9—C13—C12 162.1 (3)
C2—C3—C4—C5 1.7 (3) C10—C9—C13—C12 33.3 (4)
C2—C3—C4—C9 −176.2 (2) O3—S1—C15—C20 12.7 (2)
C3—C4—C5—C6 −1.4 (3) O2—S1—C15—C20 142.91 (19)
C9—C4—C5—C6 176.5 (2) C1—S1—C15—C20 −103.1 (2)
C4—C5—C6—C7 0.0 (4) O3—S1—C15—C16 −168.37 (19)
C5—C6—C7—O1 −178.5 (2) O2—S1—C15—C16 −38.1 (2)
C5—C6—C7—C2 1.1 (4) C1—S1—C15—C16 75.9 (2)
C8—O1—C7—C6 −179.8 (2) C20—C15—C16—C17 −1.0 (4)
C8—O1—C7—C2 0.6 (2) S1—C15—C16—C17 −180.0 (2)
C3—C2—C7—C6 −0.8 (3) C15—C16—C17—C18 0.5 (4)
C1—C2—C7—C6 179.3 (2) C16—C17—C18—C19 −0.4 (4)
C3—C2—C7—O1 178.86 (19) C16—C17—C18—C21 −179.9 (3)
C1—C2—C7—O1 −1.0 (2) C17—C18—C19—C20 1.0 (4)
C7—O1—C8—C1 0.2 (2) C21—C18—C19—C20 −179.6 (3)
C7—O1—C8—C14 179.3 (2) C16—C15—C20—C19 1.5 (4)
C2—C1—C8—O1 −0.8 (3) S1—C15—C20—C19 −179.5 (2)
S1—C1—C8—O1 178.63 (16) C18—C19—C20—C15 −1.5 (4)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1/C2/C7/O1/C8 furan ring and the C2–C7 benzene ring, respectively.

D—H···A D—H H···A D···A D—H···A
C6—H6···O3i 0.95 2.44 3.279 (3) 148
C20—H20···O2ii 0.95 2.54 3.244 (3) 131
C9—H9···Cg1iii 1.0 2.89 3.680 (3) 136
C12—H12B···Cg1iv 0.99 2.88 3.591 (3) 129
C14—H14C···Cg2ii 0.98 2.94 3.826 (3) 151

Symmetry codes: (i) x+1/2, −y+1, z−1/2; (ii) x, y+1, z; (iii) x, y−1, z; (iv) x−1/2, −y, z−1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6977).

References

  1. Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  2. Bruker (2009). APEX2, SADABS and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Choi, H. D., Seo, P. J. & Lee, U. (2012). Acta Cryst. E68, o1624. [DOI] [PMC free article] [PubMed]
  4. Choi, H. D., Seo, P. J. & Lee, U. (2014). Acta Cryst. E70, o481. [DOI] [PMC free article] [PubMed]
  5. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  6. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  7. Seo, P. J., Choi, H. D., Son, B. W. & Lee, U. (2011). Acta Cryst. E67, o2223. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S160053681400868X/bt6977sup1.cif

e-70-0o592-sup1.cif (27.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681400868X/bt6977Isup2.hkl

e-70-0o592-Isup2.hkl (203.1KB, hkl)

Supporting information file. DOI: 10.1107/S160053681400868X/bt6977Isup3.cml

CCDC reference: 997753

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES