Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 18;70(Pt 5):o577–o578. doi: 10.1107/S1600536814008496

2-[2,6-Bis(pyrazin-2-yl)pyridin-4-yl]benzoic acid

Ying Shuai a, Xiang-Yang Wang a, Jing-Wei Dai a, Jian-Zhong Wu a,*
PMCID: PMC4011275  PMID: 24860380

Abstract

In the title compound, C20H13N5O2, the two pyrazine rings are nearly coplanar with the central pyridine ring, forming dihedral angles of 2.21 (9) and 4.57 (9)°. In contrast, the strong steric hindrance caused by the ortho-carboxyl group on the phenyl ring makes this ring rotate out of the attached pyridine ring plane by 52.60 (9)°. The carboxyl group is twisted from the phenyl ring by 22.6 (1)°. In the crystal, aromatic π–π stacking inter­actions [centroid–centroid distances = 3.9186 (4) and 3.9794 (5) Å] occur between the anti­parallel mol­ecules, generating infinite chains along [100]. O—H⋯O hydrogen bonds connect the chains, leading to the formation of a two-dimensional supra­molecular network parallel to (010). Inter­molecular C—H⋯N hydrogen bonds are also observed.

Related literature  

For background to terpyridine compounds, see: Constable (2008); Eryazici et al. (2008); Schubert et al. (2006); Wild et al. (2011); Zadykowicz & Potvin (1999); Wang & Hanan (2005). For similar dipyrazinyl­pyridine compounds, see: Dares et al. (2011); Dai et al. (2010a ,b ); Vougioukalakis et al. (2010); Liegghio et al. (2001).graphic file with name e-70-0o577-scheme1.jpg

Experimental  

Crystal data  

  • C20H13N5O2

  • M r = 355.35

  • Triclinic, Inline graphic

  • a = 7.0253 (9) Å

  • b = 10.9070 (14) Å

  • c = 11.3218 (14) Å

  • α = 99.345 (2)°

  • β = 99.266 (2)°

  • γ = 102.513 (2)°

  • V = 818.17 (18) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 298 K

  • 0.22 × 0.16 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2002) T min = 0.979, T max = 0.985

  • 4395 measured reflections

  • 2998 independent reflections

  • 1732 reflections with I > 2σ(I)

  • R int = 0.022

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.049

  • wR(F 2) = 0.137

  • S = 1.00

  • 2998 reflections

  • 244 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814008496/mw2121sup1.cif

e-70-0o577-sup1.cif (171.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008496/mw2121Isup2.hkl

e-70-0o577-Isup2.hkl (164.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008496/mw2121Isup3.cdx

Supporting information file. DOI: 10.1107/S1600536814008496/mw2121Isup4.cml

CCDC reference: 997338

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1A⋯O2i 0.82 1.84 2.656 (3) 176
C15—H15⋯N2ii 0.93 2.56 3.438 (3) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

Financial support from the South China Normal University is gratefully acknowledged.

supplementary crystallographic information

1. Comment

Terpyridine compounds are among the most frequently used tridentate ligands for transition metal elements (Constable, 2008; Eryazici et al., 2008; Schubert et al., 2006; Wild et al.). However, the similar dipyrazinylpyridine compounds have received much less attention and only a few structures have been reported (Dares et al., 2011; Dai et al., 2010a; Dai et al., 2010b; Vougioukalakis et al., 2010; Liegghio et al., 2001). We previously demonstrated that 4-p-tolyl-2,6-di(pyrazin-2-yl)pyridine has stronger intermolecular interactions than its isoelectronic counterpart 4-p-tolyl-2,2':6',2''-terpyridine (suggested by a 90°C higher melting point for the former) and their coordination behaviours are also somewhat different (Dai et al., 2010a). Herein we report the synthesis of 4-o-carboxyphenyl-2,6-di(pyrazin-2-yl)pyridine, (I), the first carboxyl-containing dipyrazinylpyridine compound, via by the Kröhnke reaction in a very convenient one-pot method in quantitative yield which contrasts with the frequently used two-step procedures for preparation of many terpyridine compounds (Schubert et al., 2006). The molecular structure of (I) is shown in Fig. 1. Both pyrazinyl rings have their ortho N-atoms anti to the central pyridyl N atom. This conformation is free of possible steric strain between the vicinal C–H groups of the central pyridyl and the peripheral pyrazinyl rings and also avoids the lone-pair repulsions between syn-- positioned N atoms (Zadykowicz & Potvin, 1999) as is commonly found for the non-coordinated terpyridine or dipyrazinylpyridine compounds (Dares et al., 2011; Dai et al., 2010b; Vougioukalakis et al., 2010; Liegghio et al., 2001). The two pyrazinyl rings are nearly coplanar with the pyridyl ring as the dihedral angles between the N3- and N5-containing pyrazinyl rings and the pyridyl ring are 2.21 (9)° and 4.57 (9)°, respectively. In contrast, the strong steric hindrance caused by the ortho-carboxyl group on the phenyl ring makes this ring rotate out of the attached pyridyl plane by 52.60 (9)°. The carboxyl group twists from the phenyl ring by 22.6 (1)°.

The O–H···O and C–H···N hydrogen bonds (Table 1) as well as the aromatic π–π stacking interactions direct the crystal packing. As displayed in Fig. 2, each planar dipyrazinylpyridine moiety is antiparallel to two other moieties above and below it generating π–π stacking interactions as evidenced by the centroid-centroid distances between the nearly parallel aromatic rings: Cg(N2/N3/C1–C4)···Cg(N1/C5–C9)i 3.9186 (4) Å and Cg(N2/N3/C1–C4)···Cg(N1/C5–C9)ii 3.9794 (5) Å [symmetry codes: (i) –x, –y, –z+1; (ii) x+1, y, z]. The presence of a C15–H15···N2i hydrogen bond (Table 1, Fig. 2) may account for the fact that the former centroid-centroid distance is a little shorter than the latter. The continuous stacking of the pyridyl and the N2-containing pyrazinyl rings leads to formation of infinite one-dimensional chains along the (100) direction. Between the neighbouring chains there are strong O1–H1A···O2iii [(iii) –x+1, –y, –z] hydrogen bonds (Table 1, Fig. 2) forming a two-dimensional supramolecular network parallel to (010). There are no significant interactions among these sheets.

2. Experimental

To 15 mL of a methanolic solution of 2-acetylpyrazine (0.813 g, 6.7 mmol) and 2-carboxybenzaldehyde (0.5 g, 3.3 mmol) was added 10 mL of an aqueous solution of potassium hydroxide (3.57 mol·L–1) and then 15 mL of concentrated ammonia. After stirring for 24 h, the solution was acidified to pH 3–4 using hydrochloric acid. The resulting yellow precipitate was collected and washed with water and ethanol (yield 97%). Yellow crystals were obtained by recrystallization from chloroform, m.p. 282.2–284.0°C. IR (υ/cm–1): 3134, 3047, 1717, 1604, 1470, 1374, 1250, 1119, 1015, 850, 760, 690, 626, 480; 1H NMR (400 MHz, CDCl3, TMS, δ/ppm): 9.83 (s, 2H, pyrazinyl NCHCN), 8.61 (m, 4H, pyrazinyl NCHCHN), 8.46 (s, 2H, pyridyl NCCH), 8.06 (d, 1H, phenyl CHCCOOH), 7.59 (t, 1H, phenyl CHCHCHCCOOH), 7.51 (t, 1H, phenyl CHCHCHCHCCOOH), 7.43 (d, 1H, phenyl CHCHCCOOH); ESI-MS: m/z = 354 ([M–H]).

3. Refinement

H atoms attached to C atoms were positioned geometrically and allowed to ride on their parent atoms, with C–H = 0.93 Å and Uiso(H) = 1.2Ueq(C). The carboxyl H atom was located in a difference Fourier map and treated with the riding-model approximation with Uiso(H) = 1.5Ueq(O).

Figures

Fig. 1.

Fig. 1.

Molecular ORTEP diagram of (I) with atomic numbering. Displacement ellipsoids are drawn at the 50% probability and H atoms are shown as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Crystal packing of (I). The aromatic stacking interactions are shown as solid green lines. The O–H···O and C–H···N hydrogen bonds are shown as dashed red and light blue lines, respectively. The H atoms not involved with the hydrogen bonds are omitted for clarity.

Crystal data

C20H13N5O2 Z = 2
Mr = 355.35 F(000) = 368
Triclinic, P1 Dx = 1.442 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0253 (9) Å Cell parameters from 753 reflections
b = 10.9070 (14) Å θ = 3.2–23.9°
c = 11.3218 (14) Å µ = 0.10 mm1
α = 99.345 (2)° T = 298 K
β = 99.266 (2)° Block, yellow
γ = 102.513 (2)° 0.22 × 0.16 × 0.15 mm
V = 818.17 (18) Å3

Data collection

Bruker APEXII CCD diffractometer 2998 independent reflections
Radiation source: fine-focus sealed tube 1732 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.022
phi and ω scans θmax = 25.5°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 2002) h = −8→7
Tmin = 0.979, Tmax = 0.985 k = −12→13
4395 measured reflections l = −13→11

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0595P)2 + 0.0149P] where P = (Fo2 + 2Fc2)/3
2998 reflections (Δ/σ)max < 0.001
244 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1728 (4) −0.3687 (3) 0.4584 (3) 0.0532 (7)
H1 0.1637 −0.4541 0.4627 0.064*
C2 0.1161 (4) −0.3393 (3) 0.3473 (3) 0.0557 (8)
H2 0.0671 −0.4056 0.2790 0.067*
C3 0.1994 (3) −0.1281 (2) 0.4341 (2) 0.0380 (6)
C4 0.2524 (4) −0.1594 (3) 0.5464 (2) 0.0495 (7)
H4 0.2986 −0.0936 0.6153 0.059*
C5 0.2180 (3) 0.0075 (2) 0.4215 (2) 0.0367 (6)
C6 0.1703 (4) 0.0386 (2) 0.3081 (2) 0.0402 (6)
H6 0.1276 −0.0256 0.2378 0.048*
C7 0.1866 (4) 0.1655 (2) 0.29993 (19) 0.0366 (6)
C8 0.2548 (3) 0.2569 (2) 0.4075 (2) 0.0385 (6)
H8 0.2702 0.3434 0.4059 0.046*
C9 0.3002 (3) 0.2190 (2) 0.5181 (2) 0.0359 (6)
C10 0.3715 (3) 0.3160 (2) 0.63435 (19) 0.0361 (6)
C11 0.4319 (4) 0.2822 (3) 0.7455 (2) 0.0487 (7)
H11 0.4242 0.1963 0.7470 0.058*
C12 0.5066 (4) 0.4901 (3) 0.8416 (2) 0.0560 (8)
H12 0.5546 0.5539 0.9120 0.067*
C13 0.4448 (4) 0.5244 (3) 0.7330 (2) 0.0508 (7)
H13 0.4507 0.6102 0.7324 0.061*
C14 0.1170 (4) 0.2064 (2) 0.1841 (2) 0.0387 (6)
C15 −0.0200 (4) 0.2817 (3) 0.1901 (2) 0.0500 (7)
H15 −0.0553 0.3058 0.2646 0.060*
C16 −0.1048 (4) 0.3215 (3) 0.0891 (2) 0.0619 (8)
H16 −0.1973 0.3704 0.0960 0.074*
C17 −0.0530 (4) 0.2893 (3) −0.0211 (2) 0.0583 (8)
H17 −0.1086 0.3168 −0.0891 0.070*
C18 0.0815 (4) 0.2162 (2) −0.0302 (2) 0.0472 (7)
H18 0.1162 0.1944 −0.1053 0.057*
C19 0.1680 (4) 0.1736 (2) 0.0699 (2) 0.0384 (6)
C20 0.3147 (4) 0.0977 (2) 0.0456 (2) 0.0441 (7)
N1 0.2823 (3) 0.09612 (19) 0.52578 (16) 0.0382 (5)
N2 0.2399 (4) −0.2799 (2) 0.5597 (2) 0.0571 (7)
N3 0.1286 (3) −0.2189 (2) 0.33310 (18) 0.0492 (6)
N4 0.5000 (4) 0.3688 (2) 0.84957 (18) 0.0592 (7)
N5 0.3768 (3) 0.4380 (2) 0.62871 (17) 0.0457 (6)
O1 0.4479 (3) 0.0935 (2) 0.13504 (16) 0.0668 (6)
H1A 0.5194 0.0491 0.1102 0.100*
O2 0.3067 (3) 0.0435 (2) −0.06218 (15) 0.0668 (6)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.067 (2) 0.0413 (17) 0.0645 (19) 0.0228 (14) 0.0308 (16) 0.0198 (15)
C2 0.071 (2) 0.0374 (17) 0.0585 (18) 0.0121 (15) 0.0171 (15) 0.0081 (14)
C3 0.0415 (15) 0.0388 (15) 0.0364 (14) 0.0119 (12) 0.0116 (11) 0.0094 (11)
C4 0.0631 (19) 0.0448 (17) 0.0455 (16) 0.0180 (14) 0.0160 (14) 0.0120 (13)
C5 0.0412 (14) 0.0390 (15) 0.0321 (13) 0.0125 (11) 0.0096 (11) 0.0080 (11)
C6 0.0514 (16) 0.0365 (15) 0.0327 (13) 0.0140 (12) 0.0070 (11) 0.0052 (11)
C7 0.0460 (15) 0.0370 (15) 0.0301 (13) 0.0138 (12) 0.0103 (11) 0.0088 (11)
C8 0.0513 (16) 0.0356 (15) 0.0345 (13) 0.0166 (12) 0.0136 (12) 0.0115 (11)
C9 0.0400 (14) 0.0372 (15) 0.0347 (13) 0.0149 (11) 0.0113 (11) 0.0088 (11)
C10 0.0382 (14) 0.0396 (15) 0.0318 (13) 0.0104 (11) 0.0099 (11) 0.0066 (11)
C11 0.0630 (18) 0.0461 (17) 0.0367 (14) 0.0169 (14) 0.0069 (13) 0.0068 (12)
C12 0.070 (2) 0.0503 (19) 0.0410 (16) 0.0121 (15) 0.0063 (14) −0.0011 (13)
C13 0.071 (2) 0.0388 (16) 0.0417 (15) 0.0114 (14) 0.0150 (14) 0.0039 (12)
C14 0.0488 (16) 0.0344 (14) 0.0326 (13) 0.0099 (12) 0.0071 (11) 0.0072 (11)
C15 0.0677 (19) 0.0558 (18) 0.0362 (15) 0.0306 (15) 0.0163 (13) 0.0107 (13)
C16 0.077 (2) 0.075 (2) 0.0508 (17) 0.0470 (18) 0.0171 (16) 0.0203 (15)
C17 0.078 (2) 0.068 (2) 0.0402 (16) 0.0362 (17) 0.0102 (15) 0.0206 (14)
C18 0.0608 (18) 0.0507 (18) 0.0310 (14) 0.0151 (14) 0.0101 (12) 0.0079 (12)
C19 0.0446 (15) 0.0363 (15) 0.0339 (13) 0.0122 (12) 0.0070 (11) 0.0044 (11)
C20 0.0526 (17) 0.0422 (16) 0.0350 (14) 0.0090 (13) 0.0080 (13) 0.0051 (12)
N1 0.0465 (13) 0.0385 (13) 0.0334 (11) 0.0149 (10) 0.0114 (9) 0.0091 (9)
N2 0.0798 (18) 0.0509 (16) 0.0544 (15) 0.0276 (13) 0.0260 (13) 0.0226 (12)
N3 0.0692 (16) 0.0344 (13) 0.0439 (13) 0.0128 (11) 0.0098 (11) 0.0095 (10)
N4 0.0834 (18) 0.0574 (17) 0.0339 (12) 0.0208 (14) 0.0025 (12) 0.0060 (11)
N5 0.0593 (15) 0.0392 (13) 0.0392 (12) 0.0137 (11) 0.0111 (11) 0.0065 (10)
O1 0.0674 (14) 0.0972 (17) 0.0447 (11) 0.0458 (12) 0.0097 (10) 0.0071 (11)
O2 0.0819 (15) 0.0797 (15) 0.0412 (11) 0.0400 (12) 0.0104 (10) −0.0052 (10)

Geometric parameters (Å, º)

C1—N2 1.320 (3) C11—N4 1.331 (3)
C1—C2 1.367 (3) C11—H11 0.9300
C1—H1 0.9300 C12—N4 1.332 (3)
C2—N3 1.334 (3) C12—C13 1.373 (3)
C2—H2 0.9300 C12—H12 0.9300
C3—N3 1.331 (3) C13—N5 1.331 (3)
C3—C4 1.384 (3) C13—H13 0.9300
C3—C5 1.488 (3) C14—C15 1.397 (3)
C4—N2 1.334 (3) C14—C19 1.408 (3)
C4—H4 0.9300 C15—C16 1.380 (3)
C5—N1 1.342 (3) C15—H15 0.9300
C5—C6 1.389 (3) C16—C17 1.369 (3)
C6—C7 1.382 (3) C16—H16 0.9300
C6—H6 0.9300 C17—C18 1.367 (4)
C7—C8 1.385 (3) C17—H17 0.9300
C7—C14 1.496 (3) C18—C19 1.394 (3)
C8—C9 1.391 (3) C18—H18 0.9300
C8—H8 0.9300 C19—C20 1.486 (3)
C9—N1 1.337 (3) C20—O2 1.254 (3)
C9—C10 1.486 (3) C20—O1 1.277 (3)
C10—N5 1.336 (3) O1—H1A 0.8200
C10—C11 1.395 (3)
N2—C1—C2 122.2 (3) N4—C12—C13 122.3 (2)
N2—C1—H1 118.9 N4—C12—H12 118.8
C2—C1—H1 118.9 C13—C12—H12 118.8
N3—C2—C1 122.5 (3) N5—C13—C12 121.8 (3)
N3—C2—H2 118.8 N5—C13—H13 119.1
C1—C2—H2 118.8 C12—C13—H13 119.1
N3—C3—C4 120.9 (2) C15—C14—C19 117.0 (2)
N3—C3—C5 117.6 (2) C15—C14—C7 115.5 (2)
C4—C3—C5 121.6 (2) C19—C14—C7 127.4 (2)
N2—C4—C3 122.7 (3) C16—C15—C14 122.1 (2)
N2—C4—H4 118.7 C16—C15—H15 118.9
C3—C4—H4 118.7 C14—C15—H15 118.9
N1—C5—C6 122.8 (2) C17—C16—C15 120.1 (3)
N1—C5—C3 115.9 (2) C17—C16—H16 119.9
C6—C5—C3 121.3 (2) C15—C16—H16 119.9
C7—C6—C5 119.8 (2) C18—C17—C16 119.3 (3)
C7—C6—H6 120.1 C18—C17—H17 120.3
C5—C6—H6 120.1 C16—C17—H17 120.3
C6—C7—C8 117.3 (2) C17—C18—C19 121.8 (2)
C6—C7—C14 123.3 (2) C17—C18—H18 119.1
C8—C7—C14 119.1 (2) C19—C18—H18 119.1
C7—C8—C9 119.9 (2) C18—C19—C14 119.6 (2)
C7—C8—H8 120.1 C18—C19—C20 115.3 (2)
C9—C8—H8 120.1 C14—C19—C20 125.2 (2)
N1—C9—C8 122.6 (2) O2—C20—O1 122.5 (3)
N1—C9—C10 117.0 (2) O2—C20—C19 118.8 (2)
C8—C9—C10 120.4 (2) O1—C20—C19 118.7 (2)
N5—C10—C11 120.8 (2) C9—N1—C5 117.6 (2)
N5—C10—C9 117.4 (2) C1—N2—C4 115.6 (2)
C11—C10—C9 121.8 (2) C3—N3—C2 116.1 (2)
N4—C11—C10 122.2 (3) C11—N4—C12 116.1 (2)
N4—C11—H11 118.9 C13—N5—C10 116.8 (2)
C10—C11—H11 118.9 C20—O1—H1A 109.5
N2—C1—C2—N3 1.4 (4) C14—C15—C16—C17 −1.1 (4)
N3—C3—C4—N2 1.4 (4) C15—C16—C17—C18 0.7 (5)
C5—C3—C4—N2 −179.0 (2) C16—C17—C18—C19 −0.1 (4)
N3—C3—C5—N1 177.5 (2) C17—C18—C19—C14 −0.2 (4)
C4—C3—C5—N1 −2.2 (3) C17—C18—C19—C20 −178.6 (3)
N3—C3—C5—C6 −2.4 (3) C15—C14—C19—C18 −0.1 (4)
C4—C3—C5—C6 178.0 (2) C7—C14—C19—C18 177.1 (2)
N1—C5—C6—C7 −0.7 (4) C15—C14—C19—C20 178.1 (2)
C3—C5—C6—C7 179.1 (2) C7—C14—C19—C20 −4.6 (4)
C5—C6—C7—C8 1.2 (3) C18—C19—C20—O2 −22.1 (3)
C5—C6—C7—C14 −172.8 (2) C14—C19—C20—O2 159.6 (2)
C6—C7—C8—C9 −1.1 (3) C18—C19—C20—O1 155.8 (2)
C14—C7—C8—C9 173.2 (2) C14—C19—C20—O1 −22.5 (4)
C7—C8—C9—N1 0.5 (4) C8—C9—N1—C5 0.1 (3)
C7—C8—C9—C10 −179.4 (2) C10—C9—N1—C5 179.9 (2)
N1—C9—C10—N5 −175.5 (2) C6—C5—N1—C9 0.0 (3)
C8—C9—C10—N5 4.4 (3) C3—C5—N1—C9 −179.8 (2)
N1—C9—C10—C11 4.8 (3) C2—C1—N2—C4 −1.2 (4)
C8—C9—C10—C11 −175.3 (2) C3—C4—N2—C1 −0.2 (4)
N5—C10—C11—N4 −1.2 (4) C4—C3—N3—C2 −1.2 (4)
C9—C10—C11—N4 178.5 (2) C5—C3—N3—C2 179.2 (2)
N4—C12—C13—N5 −0.8 (4) C1—C2—N3—C3 −0.2 (4)
C6—C7—C14—C15 123.9 (3) C10—C11—N4—C12 0.3 (4)
C8—C7—C14—C15 −50.1 (3) C13—C12—N4—C11 0.7 (4)
C6—C7—C14—C19 −53.4 (4) C12—C13—N5—C10 −0.1 (4)
C8—C7—C14—C19 132.6 (3) C11—C10—N5—C13 1.1 (3)
C19—C14—C15—C16 0.8 (4) C9—C10—N5—C13 −178.6 (2)
C7—C14—C15—C16 −176.8 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1—H1A···O2i 0.82 1.84 2.656 (3) 176
C15—H15···N2ii 0.93 2.56 3.438 (3) 157

Symmetry codes: (i) −x+1, −y, −z; (ii) −x, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: MW2121).

References

  1. Bruker (2002). SADABS Bruker AXS Inc, Madison, Wisconsin, USA.
  2. Bruker (2004). APEX2 and SAINT Bruker AXS Inc, Madison, Wisconsin, USA.
  3. Constable, E. C. (2008). Coord. Chem. Rev. 252, 842–855.
  4. Dai, J.-W., Li, Z.-Y., Chen, Y.-L., Cai, B., Wu, J.-Z. & Yu, Y. (2010b). Z. Anorg. Allg. Chem. 636, 2475–2480.
  5. Dai, J.-W., Li, B.-Z., Chen, Y.-L., Huang, G., Cai, B., Yu, Y. & Wu, J.-Z. (2010a). Inorg. Chem. Commun. 13, 625–629.
  6. Dares, C., Manivannan, T., Potvin, P. G. & Lever, A. B. P. (2011). Inorg. Chim. Acta, 374, 606–619.
  7. Eryazici, I., Moorefield, C. N. & Newkome, G. R. (2008). Chem. Rev. 108, 1834–1895. [DOI] [PubMed]
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Liegghio, R., Potvin, P. G. & Lever, A. B. P. (2001). Inorg. Chem. 40, 5485–5486. [DOI] [PubMed]
  10. Schubert, U. S., Hofmeier, H. & Newkome, G. R. (2006). In Modern Terpyridine Chemistry Weinheim: Wiley-VCH.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Vougioukalakis, G. C., Stergiopoulos, T., Kantonis, G., Kontos, A. G., Papadopoulos, K., Stublla, A., Potvin, P. G. & Falaras, P. (2010). J. Photochem. Photobiol. A Chem. 214, 22–32.
  14. Wang, J. & Hanan, G. S. (2005). Synlett, pp. 1251–1254.
  15. Wild, A., Winter, A., Schlütter, F. & Schubert, U. S. (2011). Chem. Soc. Rev. 40, 1459–1511. [DOI] [PubMed]
  16. Zadykowicz, J. & Potvin, P. G. (1999). J. Coord. Chem. 47, 395–407.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814008496/mw2121sup1.cif

e-70-0o577-sup1.cif (171.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008496/mw2121Isup2.hkl

e-70-0o577-Isup2.hkl (164.6KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008496/mw2121Isup3.cdx

Supporting information file. DOI: 10.1107/S1600536814008496/mw2121Isup4.cml

CCDC reference: 997338

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES