Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 18;70(Pt 5):o573. doi: 10.1107/S1600536814008241

1,10-Phenanthroline-5,6-dione ethanol monosolvate

Jing-Wei Dai a, Zhao-Yang Li b, Osamu Sato a,*
PMCID: PMC4011276  PMID: 24860377

Abstract

In the title compound, C12H6N2O2·C2H5OH, the mol­ecule of the 1,10-phenanthroline-5,6-dione is approximately planar, with a maximum deviation of 0.051 (1) Å. In the crystal, mol­ecules are linked by O—H⋯N and weak C—H⋯O hydrogen bonds, forming supra­molecular chains propagating along [110]. π–π stacking inter­actions are observed between the pyridine rings of neighbouring chains, the centroid–centroid separations being 3.6226 (11) and 3.7543 (11) Å.

Related literature  

For background to and applications of 1,10-phenanthroline-5,6-dione, see: Smith & Cagle (1947); Ma et al. (2010); Goss & Abruna (1985); Murphy et al. (2011); Wu et al. (1996); Pinczewska et al. (2012); Poteet & MacDonnell (2013); Wu et al. (2002); Poteet et al. 2013); Paw et al. (1998). For the synthesis, see: Paw & Eisenberg (1997). For a related structure, see: Calderazzo et al. (1999).graphic file with name e-70-0o573-scheme1.jpg

Experimental  

Crystal data  

  • C12H6N2O2·C2H6O

  • M r = 256.26

  • Triclinic, Inline graphic

  • a = 7.3064 (15) Å

  • b = 9.1055 (18) Å

  • c = 9.7291 (19) Å

  • α = 96.47 (3)°

  • β = 101.68 (3)°

  • γ = 109.83 (3)°

  • V = 584.6 (2) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.10 mm−1

  • T = 123 K

  • 0.20 × 0.20 × 0.20 mm

Data collection  

  • Rigaku Saturn724+ diffractometer

  • 5059 measured reflections

  • 2252 independent reflections

  • 2074 reflections with I > 2σ(I)

  • R int = 0.020

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.040

  • wR(F 2) = 0.114

  • S = 1.06

  • 2252 reflections

  • 185 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814008241/xu5783sup1.cif

e-70-0o573-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008241/xu5783Isup2.hkl

e-70-0o573-Isup2.hkl (110.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008241/xu5783Isup3.cml

CCDC reference: 996896

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3O⋯N1i 0.85 (1) 2.08 (1) 2.8258 (19) 146 (2)
C1—H1⋯O2ii 0.95 2.53 3.3381 (19) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Acknowledgments

The authors would like to thank the China Scholarship Council (CSC).

supplementary crystallographic information

1. Introduction

2. Experimental

2.1. Synthesis and crystallization

The title compound was prepared according to literature method (Paw & Eisenberg, 1997). An ice-cold mixture of concentrated H2SO4 (40 mL) and HNO3 (20 mL) was added to 4 g of 1,10-phenanthroline (0.02 mol) and 4 g of KBr (0.03 mol). The mixture was heated at 90 oC for 3 h. The hot yellow solution was poured over 200 mL of ice and neutralized carefully with sodium hydroxide until neutral to slightly acidic pH. Extraction with CH2Cl2 (4*100 mL) followed by drying with Na2SO4 and removal of solvent gave 2.8 g (yield = 67%) of 1,10-phenanthroline-5,6-dione. This product was purified further by crystallization from ethanol.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. Carbon-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. The hy­droxy H atom was located in a difference Fourier map, and was refined with distance restraints of O—H = 0.84±0.01, Uiso(H) = 1.2Ueq(O).

3. Results and discussion

1,10-Phenanthroline-5,6-dione has been known for many years (Smith & Cagle, 1947), and its chelating ability as either a di­imine or a catecholate was important in coordination chemistry (Ma et al., 2010, Goss & Abruna, 1985, Murphy et al., 2011), analytical chemistry (Wu et al., 1996, Pinczewska et al., 2012) and biophysical chemistry (Poteet & MacDonnell, 2013, Wu et al., 2002, Poteet et al., 2013). Moreover, it can become as the bridging ligand, which has shown very inter­esting function in multinuclear complexes (Paw et al., 1998, Paw & Eisenberg, 1997, Calderazzo et al., 1999).

According to the structural analysis, the bond lengths and angles of the title compound are generally within normal ranges. The asymmetric unit of the title compound consists of one 1,10-phenanthroline-5,6-dione molecule and one ethanol molecule. Between molecules, O—H···N and C—H···O hydrogen bonds can be found that further form one-dimensional chain. The weak π···π stacking inter­actions between adjacent chains are also observed [centroid– centroid separations being 3.6226 (11) and 3.7543 (11) Å].

Figures

Fig. 1.

Fig. 1.

Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Crystal packing of the title compound. Intermolecular O—H···N and C—H···O hydrogen bonds are shown as green dashed lines, and π-π stacking interactions between molecules are shown as blue dashed lines.

Crystal data

C12H6N2O2·C2H6O Z = 2
Mr = 256.26 F(000) = 268
Triclinic, P1 Dx = 1.456 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.3064 (15) Å Cell parameters from 2355 reflections
b = 9.1055 (18) Å θ = 3.1–30.2°
c = 9.7291 (19) Å µ = 0.10 mm1
α = 96.47 (3)° T = 123 K
β = 101.68 (3)° Block, yellow
γ = 109.83 (3)° 0.20 × 0.20 × 0.20 mm
V = 584.6 (2) Å3

Data collection

Rigaku Saturn724+ diffractometer 2074 reflections with I > 2σ(I)
Radiation source: Rotating Anode Rint = 0.020
Confocal monochromator θmax = 26.0°, θmin = 3.1°
Detector resolution: 28.5714 pixels mm-1 h = −9→9
ω scans k = −11→11
5059 measured reflections l = −11→11
2252 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.114 H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0709P)2 + 0.118P] where P = (Fo2 + 2Fc2)/3
2252 reflections (Δ/σ)max < 0.001
185 parameters Δρmax = 0.24 e Å3
1 restraint Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C4 0.66468 (17) 0.96363 (14) 0.27101 (12) 0.0211 (3)
C11 0.69855 (17) 0.93910 (13) 0.52865 (12) 0.0196 (3)
C5 0.50156 (18) 0.80403 (14) 0.22423 (12) 0.0237 (3)
C7 0.54977 (17) 0.78514 (14) 0.49173 (12) 0.0211 (3)
C6 0.43997 (17) 0.70995 (13) 0.34035 (13) 0.0239 (3)
C12 0.75757 (16) 1.02974 (13) 0.41609 (12) 0.0200 (3)
C8 0.50365 (18) 0.70329 (14) 0.60099 (13) 0.0250 (3)
H8 0.4042 0.5987 0.5794 0.030*
C9 0.60544 (18) 0.77748 (15) 0.74108 (13) 0.0270 (3)
H9 0.5787 0.7248 0.8179 0.032*
C3 0.72616 (18) 1.05260 (15) 0.16952 (13) 0.0252 (3)
H3 0.6651 1.0108 0.0704 0.030*
C1 0.95979 (18) 1.25750 (14) 0.36088 (14) 0.0262 (3)
H1 1.0632 1.3603 0.3919 0.031*
C10 0.74812 (18) 0.93131 (15) 0.76688 (13) 0.0261 (3)
H10 0.8166 0.9818 0.8636 0.031*
C2 0.87625 (19) 1.20164 (15) 0.21448 (14) 0.0272 (3)
H2 0.9213 1.2644 0.1475 0.033*
O1 0.41332 (14) 0.74720 (11) 0.09901 (9) 0.0331 (3)
O2 0.30275 (14) 0.58111 (10) 0.30567 (10) 0.0333 (3)
N2 0.79532 (15) 1.01274 (12) 0.66490 (10) 0.0237 (2)
N1 0.90359 (15) 1.17542 (12) 0.46054 (11) 0.0233 (2)
C15 0.8686 (2) 0.65765 (16) 0.07549 (14) 0.0336 (3)
H15A 0.8325 0.7503 0.0621 0.050*
H15B 0.8372 0.5885 −0.0177 0.050*
H15C 1.0130 0.6934 0.1211 0.050*
C14 0.7508 (2) 0.56671 (15) 0.16901 (14) 0.0312 (3)
O3 0.76490 (13) 0.66129 (10) 0.30034 (9) 0.0291 (2)
H14A 0.598 (3) 0.5214 (19) 0.1167 (17) 0.042 (4)*
H14B 0.797 (3) 0.479 (2) 0.1910 (18) 0.048 (5)*
H3O 0.8864 (17) 0.719 (2) 0.3431 (19) 0.058 (5)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C4 0.0190 (6) 0.0245 (6) 0.0236 (6) 0.0108 (5) 0.0073 (4) 0.0073 (5)
C11 0.0173 (5) 0.0214 (6) 0.0226 (6) 0.0091 (4) 0.0069 (4) 0.0051 (4)
C5 0.0215 (6) 0.0259 (6) 0.0238 (6) 0.0102 (5) 0.0044 (5) 0.0036 (5)
C7 0.0188 (6) 0.0219 (6) 0.0252 (6) 0.0091 (5) 0.0077 (4) 0.0064 (4)
C6 0.0205 (6) 0.0222 (6) 0.0291 (6) 0.0078 (5) 0.0068 (5) 0.0043 (5)
C12 0.0168 (5) 0.0216 (6) 0.0238 (6) 0.0086 (4) 0.0070 (4) 0.0053 (4)
C8 0.0217 (6) 0.0231 (6) 0.0330 (7) 0.0085 (5) 0.0107 (5) 0.0100 (5)
C9 0.0266 (6) 0.0333 (7) 0.0277 (6) 0.0138 (5) 0.0118 (5) 0.0145 (5)
C3 0.0242 (6) 0.0326 (7) 0.0240 (6) 0.0143 (5) 0.0085 (5) 0.0095 (5)
C1 0.0215 (6) 0.0234 (6) 0.0355 (7) 0.0065 (5) 0.0113 (5) 0.0107 (5)
C10 0.0260 (6) 0.0332 (7) 0.0215 (6) 0.0124 (5) 0.0077 (5) 0.0069 (5)
C2 0.0268 (6) 0.0324 (7) 0.0318 (7) 0.0150 (5) 0.0157 (5) 0.0163 (5)
O1 0.0338 (5) 0.0333 (5) 0.0238 (5) 0.0072 (4) 0.0005 (4) 0.0019 (4)
O2 0.0290 (5) 0.0249 (5) 0.0346 (5) −0.0012 (4) 0.0051 (4) 0.0027 (4)
N2 0.0234 (5) 0.0257 (5) 0.0222 (5) 0.0088 (4) 0.0070 (4) 0.0044 (4)
N1 0.0200 (5) 0.0223 (5) 0.0276 (5) 0.0068 (4) 0.0076 (4) 0.0060 (4)
C15 0.0321 (7) 0.0332 (7) 0.0282 (7) 0.0040 (5) 0.0083 (5) 0.0019 (5)
C14 0.0388 (8) 0.0250 (6) 0.0296 (7) 0.0104 (5) 0.0116 (6) 0.0043 (5)
O3 0.0255 (5) 0.0329 (5) 0.0261 (5) 0.0092 (4) 0.0059 (4) 0.0007 (4)

Geometric parameters (Å, º)

C4—C3 1.3950 (17) C3—C2 1.3776 (19)
C4—C12 1.3995 (17) C3—H3 0.9500
C4—C5 1.4818 (18) C1—N1 1.3355 (16)
C11—N2 1.3436 (16) C1—C2 1.3907 (18)
C11—C7 1.4037 (17) C1—H1 0.9500
C11—C12 1.4899 (16) C10—N2 1.3357 (16)
C5—O1 1.2171 (15) C10—H10 0.9500
C5—C6 1.5411 (17) C2—H2 0.9500
C7—C8 1.3972 (17) C15—C14 1.5026 (18)
C7—C6 1.4843 (18) C15—H15A 0.9800
C6—O2 1.2128 (16) C15—H15B 0.9800
C12—N1 1.3448 (16) C15—H15C 0.9800
C8—C9 1.3813 (18) C14—O3 1.4225 (15)
C8—H8 0.9500 C14—H14A 1.040 (18)
C9—C10 1.3914 (19) C14—H14B 0.995 (18)
C9—H9 0.9500 O3—H3O 0.850 (10)
C3—C4—C12 118.58 (11) C4—C3—H3 120.3
C3—C4—C5 119.93 (11) N1—C1—C2 124.01 (11)
C12—C4—C5 121.48 (11) N1—C1—H1 118.0
N2—C11—C7 122.79 (11) C2—C1—H1 118.0
N2—C11—C12 116.36 (10) N2—C10—C9 124.42 (12)
C7—C11—C12 120.85 (11) N2—C10—H10 117.8
O1—C5—C4 122.47 (12) C9—C10—H10 117.8
O1—C5—C6 119.54 (11) C3—C2—C1 117.99 (11)
C4—C5—C6 117.97 (10) C3—C2—H2 121.0
C8—C7—C11 118.69 (11) C1—C2—H2 121.0
C8—C7—C6 119.96 (11) C10—N2—C11 117.08 (11)
C11—C7—C6 121.35 (11) C1—N1—C12 117.77 (11)
O2—C6—C7 122.90 (12) C14—C15—H15A 109.5
O2—C6—C5 119.48 (11) C14—C15—H15B 109.5
C7—C6—C5 117.60 (10) H15A—C15—H15B 109.5
N1—C12—C4 122.28 (11) C14—C15—H15C 109.5
N1—C12—C11 117.04 (10) H15A—C15—H15C 109.5
C4—C12—C11 120.68 (11) H15B—C15—H15C 109.5
C9—C8—C7 118.69 (11) O3—C14—C15 114.19 (11)
C9—C8—H8 120.7 O3—C14—H14A 104.6 (9)
C7—C8—H8 120.7 C15—C14—H14A 109.3 (9)
C8—C9—C10 118.31 (11) O3—C14—H14B 108.5 (10)
C8—C9—H9 120.8 C15—C14—H14B 109.8 (10)
C10—C9—H9 120.8 H14A—C14—H14B 110.5 (14)
C2—C3—C4 119.37 (12) C14—O3—H3O 111.5 (14)
C2—C3—H3 120.3

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3O···N1i 0.85 (1) 2.08 (1) 2.8258 (19) 146 (2)
C1—H1···O2ii 0.95 2.53 3.3381 (19) 143

Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5783).

References

  1. Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396.
  2. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  3. Goss, C. A. & Abruna, H. D. (1985). Inorg. Chem. 24, 4263–4267.
  4. Ma, Q., Zhu, M. L., Yuan, C. X., Feng, S. S., Lu, L. P. & Wang, Q. M. (2010). Cryst. Growth Des. 10, 1706–1714.
  5. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  6. Murphy, D. M., McNamara, K., Richardson, P., Sanchez-Romaguera, V., Winpenny, R. E. P. & Yellowlees, L. J. (2011). Inorg. Chim. Acta, 374, 435–441.
  7. Paw, W., Connick, W. B. & Eisenberg, R. (1998). Inorg. Chem. 37, 3919–3926. [DOI] [PubMed]
  8. Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293. [DOI] [PubMed]
  9. Pinczewska, A., Sosna, M., Bloodworth, S., Kilburn, J. D. & Bartlett, P. N. (2012). J. Am. Chem. Soc. 134, 18022–18033. [DOI] [PubMed]
  10. Poteet, S. A. & MacDonnell, F. M. (2013). Dalton Trans. 42, 13305–13307. [DOI] [PubMed]
  11. Poteet, S. A., Majewski, M. B., Breitbach, Z. S., Griffith, C. A., Singh, S., Armstrong, D. W., Wolf, M. O. & MacDonnell, F. M. (2013). J. Am. Chem. Soc. 135, 2419–2422. [DOI] [PubMed]
  12. Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Smith, G. F. & Cagle, F. W. (1947). J. Org. Chem. 12, 781–784. [DOI] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  16. Wu, J. Z., Li, H., Zhang, J. G. & Xu, J. H. (2002). Inorg. Chem. Commun. 5, 71–75.
  17. Wu, Q., Maskus, M., Pariente, F., Tobalina, F., Fernandez, V. M., Lorenzo, E. & Abruna, H. D. (1996). Anal. Chem. 68, 3688–3696.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814008241/xu5783sup1.cif

e-70-0o573-sup1.cif (15.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008241/xu5783Isup2.hkl

e-70-0o573-Isup2.hkl (110.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008241/xu5783Isup3.cml

CCDC reference: 996896

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES