Abstract
In the title compound, C12H6N2O2·C2H5OH, the molecule of the 1,10-phenanthroline-5,6-dione is approximately planar, with a maximum deviation of 0.051 (1) Å. In the crystal, molecules are linked by O—H⋯N and weak C—H⋯O hydrogen bonds, forming supramolecular chains propagating along [110]. π–π stacking interactions are observed between the pyridine rings of neighbouring chains, the centroid–centroid separations being 3.6226 (11) and 3.7543 (11) Å.
Related literature
For background to and applications of 1,10-phenanthroline-5,6-dione, see: Smith & Cagle (1947 ▶); Ma et al. (2010 ▶); Goss & Abruna (1985 ▶); Murphy et al. (2011 ▶); Wu et al. (1996 ▶); Pinczewska et al. (2012 ▶); Poteet & MacDonnell (2013 ▶); Wu et al. (2002 ▶); Poteet et al. 2013 ▶); Paw et al. (1998 ▶). For the synthesis, see: Paw & Eisenberg (1997 ▶). For a related structure, see: Calderazzo et al. (1999 ▶).
Experimental
Crystal data
C12H6N2O2·C2H6O
M r = 256.26
Triclinic,
a = 7.3064 (15) Å
b = 9.1055 (18) Å
c = 9.7291 (19) Å
α = 96.47 (3)°
β = 101.68 (3)°
γ = 109.83 (3)°
V = 584.6 (2) Å3
Z = 2
Mo Kα radiation
μ = 0.10 mm−1
T = 123 K
0.20 × 0.20 × 0.20 mm
Data collection
Rigaku Saturn724+ diffractometer
5059 measured reflections
2252 independent reflections
2074 reflections with I > 2σ(I)
R int = 0.020
Refinement
R[F 2 > 2σ(F 2)] = 0.040
wR(F 2) = 0.114
S = 1.06
2252 reflections
185 parameters
1 restraint
H atoms treated by a mixture of independent and constrained refinement
Δρmax = 0.24 e Å−3
Δρmin = −0.17 e Å−3
Data collection: CrystalClear (Rigaku, 2008 ▶); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 ▶); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▶); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▶) and Mercury (Macrae et al., 2008 ▶); software used to prepare material for publication: publCIF (Westrip, 2010 ▶).
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814008241/xu5783sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008241/xu5783Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814008241/xu5783Isup3.cml
CCDC reference: 996896
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O3—H3O⋯N1i | 0.85 (1) | 2.08 (1) | 2.8258 (19) | 146 (2) |
| C1—H1⋯O2ii | 0.95 | 2.53 | 3.3381 (19) | 143 |
Symmetry codes: (i)
; (ii)
.
Acknowledgments
The authors would like to thank the China Scholarship Council (CSC).
supplementary crystallographic information
1. Introduction
2. Experimental
2.1. Synthesis and crystallization
The title compound was prepared according to literature method (Paw & Eisenberg, 1997). An ice-cold mixture of concentrated H2SO4 (40 mL) and HNO3 (20 mL) was added to 4 g of 1,10-phenanthroline (0.02 mol) and 4 g of KBr (0.03 mol). The mixture was heated at 90 oC for 3 h. The hot yellow solution was poured over 200 mL of ice and neutralized carefully with sodium hydroxide until neutral to slightly acidic pH. Extraction with CH2Cl2 (4*100 mL) followed by drying with Na2SO4 and removal of solvent gave 2.8 g (yield = 67%) of 1,10-phenanthroline-5,6-dione. This product was purified further by crystallization from ethanol.
2.2. Refinement
Crystal data, data collection and structure refinement details are summarized in Table 1. Carbon-bound H-atoms were placed in calculated positions and were included in the refinement in the riding model approximation with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the others. The hydroxy H atom was located in a difference Fourier map, and was refined with distance restraints of O—H = 0.84±0.01, Uiso(H) = 1.2Ueq(O).
3. Results and discussion
1,10-Phenanthroline-5,6-dione has been known for many years (Smith & Cagle, 1947), and its chelating ability as either a diimine or a catecholate was important in coordination chemistry (Ma et al., 2010, Goss & Abruna, 1985, Murphy et al., 2011), analytical chemistry (Wu et al., 1996, Pinczewska et al., 2012) and biophysical chemistry (Poteet & MacDonnell, 2013, Wu et al., 2002, Poteet et al., 2013). Moreover, it can become as the bridging ligand, which has shown very interesting function in multinuclear complexes (Paw et al., 1998, Paw & Eisenberg, 1997, Calderazzo et al., 1999).
According to the structural analysis, the bond lengths and angles of the title compound are generally within normal ranges. The asymmetric unit of the title compound consists of one 1,10-phenanthroline-5,6-dione molecule and one ethanol molecule. Between molecules, O—H···N and C—H···O hydrogen bonds can be found that further form one-dimensional chain. The weak π···π stacking interactions between adjacent chains are also observed [centroid– centroid separations being 3.6226 (11) and 3.7543 (11) Å].
Figures
Fig. 1.
Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 30% probability level.
Fig. 2.

Crystal packing of the title compound. Intermolecular O—H···N and C—H···O hydrogen bonds are shown as green dashed lines, and π-π stacking interactions between molecules are shown as blue dashed lines.
Crystal data
| C12H6N2O2·C2H6O | Z = 2 |
| Mr = 256.26 | F(000) = 268 |
| Triclinic, P1 | Dx = 1.456 Mg m−3 |
| Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.3064 (15) Å | Cell parameters from 2355 reflections |
| b = 9.1055 (18) Å | θ = 3.1–30.2° |
| c = 9.7291 (19) Å | µ = 0.10 mm−1 |
| α = 96.47 (3)° | T = 123 K |
| β = 101.68 (3)° | Block, yellow |
| γ = 109.83 (3)° | 0.20 × 0.20 × 0.20 mm |
| V = 584.6 (2) Å3 |
Data collection
| Rigaku Saturn724+ diffractometer | 2074 reflections with I > 2σ(I) |
| Radiation source: Rotating Anode | Rint = 0.020 |
| Confocal monochromator | θmax = 26.0°, θmin = 3.1° |
| Detector resolution: 28.5714 pixels mm-1 | h = −9→9 |
| ω scans | k = −11→11 |
| 5059 measured reflections | l = −11→11 |
| 2252 independent reflections |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.040 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.114 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.06 | w = 1/[σ2(Fo2) + (0.0709P)2 + 0.118P] where P = (Fo2 + 2Fc2)/3 |
| 2252 reflections | (Δ/σ)max < 0.001 |
| 185 parameters | Δρmax = 0.24 e Å−3 |
| 1 restraint | Δρmin = −0.17 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C4 | 0.66468 (17) | 0.96363 (14) | 0.27101 (12) | 0.0211 (3) | |
| C11 | 0.69855 (17) | 0.93910 (13) | 0.52865 (12) | 0.0196 (3) | |
| C5 | 0.50156 (18) | 0.80403 (14) | 0.22423 (12) | 0.0237 (3) | |
| C7 | 0.54977 (17) | 0.78514 (14) | 0.49173 (12) | 0.0211 (3) | |
| C6 | 0.43997 (17) | 0.70995 (13) | 0.34035 (13) | 0.0239 (3) | |
| C12 | 0.75757 (16) | 1.02974 (13) | 0.41609 (12) | 0.0200 (3) | |
| C8 | 0.50365 (18) | 0.70329 (14) | 0.60099 (13) | 0.0250 (3) | |
| H8 | 0.4042 | 0.5987 | 0.5794 | 0.030* | |
| C9 | 0.60544 (18) | 0.77748 (15) | 0.74108 (13) | 0.0270 (3) | |
| H9 | 0.5787 | 0.7248 | 0.8179 | 0.032* | |
| C3 | 0.72616 (18) | 1.05260 (15) | 0.16952 (13) | 0.0252 (3) | |
| H3 | 0.6651 | 1.0108 | 0.0704 | 0.030* | |
| C1 | 0.95979 (18) | 1.25750 (14) | 0.36088 (14) | 0.0262 (3) | |
| H1 | 1.0632 | 1.3603 | 0.3919 | 0.031* | |
| C10 | 0.74812 (18) | 0.93131 (15) | 0.76688 (13) | 0.0261 (3) | |
| H10 | 0.8166 | 0.9818 | 0.8636 | 0.031* | |
| C2 | 0.87625 (19) | 1.20164 (15) | 0.21448 (14) | 0.0272 (3) | |
| H2 | 0.9213 | 1.2644 | 0.1475 | 0.033* | |
| O1 | 0.41332 (14) | 0.74720 (11) | 0.09901 (9) | 0.0331 (3) | |
| O2 | 0.30275 (14) | 0.58111 (10) | 0.30567 (10) | 0.0333 (3) | |
| N2 | 0.79532 (15) | 1.01274 (12) | 0.66490 (10) | 0.0237 (2) | |
| N1 | 0.90359 (15) | 1.17542 (12) | 0.46054 (11) | 0.0233 (2) | |
| C15 | 0.8686 (2) | 0.65765 (16) | 0.07549 (14) | 0.0336 (3) | |
| H15A | 0.8325 | 0.7503 | 0.0621 | 0.050* | |
| H15B | 0.8372 | 0.5885 | −0.0177 | 0.050* | |
| H15C | 1.0130 | 0.6934 | 0.1211 | 0.050* | |
| C14 | 0.7508 (2) | 0.56671 (15) | 0.16901 (14) | 0.0312 (3) | |
| O3 | 0.76490 (13) | 0.66129 (10) | 0.30034 (9) | 0.0291 (2) | |
| H14A | 0.598 (3) | 0.5214 (19) | 0.1167 (17) | 0.042 (4)* | |
| H14B | 0.797 (3) | 0.479 (2) | 0.1910 (18) | 0.048 (5)* | |
| H3O | 0.8864 (17) | 0.719 (2) | 0.3431 (19) | 0.058 (5)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C4 | 0.0190 (6) | 0.0245 (6) | 0.0236 (6) | 0.0108 (5) | 0.0073 (4) | 0.0073 (5) |
| C11 | 0.0173 (5) | 0.0214 (6) | 0.0226 (6) | 0.0091 (4) | 0.0069 (4) | 0.0051 (4) |
| C5 | 0.0215 (6) | 0.0259 (6) | 0.0238 (6) | 0.0102 (5) | 0.0044 (5) | 0.0036 (5) |
| C7 | 0.0188 (6) | 0.0219 (6) | 0.0252 (6) | 0.0091 (5) | 0.0077 (4) | 0.0064 (4) |
| C6 | 0.0205 (6) | 0.0222 (6) | 0.0291 (6) | 0.0078 (5) | 0.0068 (5) | 0.0043 (5) |
| C12 | 0.0168 (5) | 0.0216 (6) | 0.0238 (6) | 0.0086 (4) | 0.0070 (4) | 0.0053 (4) |
| C8 | 0.0217 (6) | 0.0231 (6) | 0.0330 (7) | 0.0085 (5) | 0.0107 (5) | 0.0100 (5) |
| C9 | 0.0266 (6) | 0.0333 (7) | 0.0277 (6) | 0.0138 (5) | 0.0118 (5) | 0.0145 (5) |
| C3 | 0.0242 (6) | 0.0326 (7) | 0.0240 (6) | 0.0143 (5) | 0.0085 (5) | 0.0095 (5) |
| C1 | 0.0215 (6) | 0.0234 (6) | 0.0355 (7) | 0.0065 (5) | 0.0113 (5) | 0.0107 (5) |
| C10 | 0.0260 (6) | 0.0332 (7) | 0.0215 (6) | 0.0124 (5) | 0.0077 (5) | 0.0069 (5) |
| C2 | 0.0268 (6) | 0.0324 (7) | 0.0318 (7) | 0.0150 (5) | 0.0157 (5) | 0.0163 (5) |
| O1 | 0.0338 (5) | 0.0333 (5) | 0.0238 (5) | 0.0072 (4) | 0.0005 (4) | 0.0019 (4) |
| O2 | 0.0290 (5) | 0.0249 (5) | 0.0346 (5) | −0.0012 (4) | 0.0051 (4) | 0.0027 (4) |
| N2 | 0.0234 (5) | 0.0257 (5) | 0.0222 (5) | 0.0088 (4) | 0.0070 (4) | 0.0044 (4) |
| N1 | 0.0200 (5) | 0.0223 (5) | 0.0276 (5) | 0.0068 (4) | 0.0076 (4) | 0.0060 (4) |
| C15 | 0.0321 (7) | 0.0332 (7) | 0.0282 (7) | 0.0040 (5) | 0.0083 (5) | 0.0019 (5) |
| C14 | 0.0388 (8) | 0.0250 (6) | 0.0296 (7) | 0.0104 (5) | 0.0116 (6) | 0.0043 (5) |
| O3 | 0.0255 (5) | 0.0329 (5) | 0.0261 (5) | 0.0092 (4) | 0.0059 (4) | 0.0007 (4) |
Geometric parameters (Å, º)
| C4—C3 | 1.3950 (17) | C3—C2 | 1.3776 (19) |
| C4—C12 | 1.3995 (17) | C3—H3 | 0.9500 |
| C4—C5 | 1.4818 (18) | C1—N1 | 1.3355 (16) |
| C11—N2 | 1.3436 (16) | C1—C2 | 1.3907 (18) |
| C11—C7 | 1.4037 (17) | C1—H1 | 0.9500 |
| C11—C12 | 1.4899 (16) | C10—N2 | 1.3357 (16) |
| C5—O1 | 1.2171 (15) | C10—H10 | 0.9500 |
| C5—C6 | 1.5411 (17) | C2—H2 | 0.9500 |
| C7—C8 | 1.3972 (17) | C15—C14 | 1.5026 (18) |
| C7—C6 | 1.4843 (18) | C15—H15A | 0.9800 |
| C6—O2 | 1.2128 (16) | C15—H15B | 0.9800 |
| C12—N1 | 1.3448 (16) | C15—H15C | 0.9800 |
| C8—C9 | 1.3813 (18) | C14—O3 | 1.4225 (15) |
| C8—H8 | 0.9500 | C14—H14A | 1.040 (18) |
| C9—C10 | 1.3914 (19) | C14—H14B | 0.995 (18) |
| C9—H9 | 0.9500 | O3—H3O | 0.850 (10) |
| C3—C4—C12 | 118.58 (11) | C4—C3—H3 | 120.3 |
| C3—C4—C5 | 119.93 (11) | N1—C1—C2 | 124.01 (11) |
| C12—C4—C5 | 121.48 (11) | N1—C1—H1 | 118.0 |
| N2—C11—C7 | 122.79 (11) | C2—C1—H1 | 118.0 |
| N2—C11—C12 | 116.36 (10) | N2—C10—C9 | 124.42 (12) |
| C7—C11—C12 | 120.85 (11) | N2—C10—H10 | 117.8 |
| O1—C5—C4 | 122.47 (12) | C9—C10—H10 | 117.8 |
| O1—C5—C6 | 119.54 (11) | C3—C2—C1 | 117.99 (11) |
| C4—C5—C6 | 117.97 (10) | C3—C2—H2 | 121.0 |
| C8—C7—C11 | 118.69 (11) | C1—C2—H2 | 121.0 |
| C8—C7—C6 | 119.96 (11) | C10—N2—C11 | 117.08 (11) |
| C11—C7—C6 | 121.35 (11) | C1—N1—C12 | 117.77 (11) |
| O2—C6—C7 | 122.90 (12) | C14—C15—H15A | 109.5 |
| O2—C6—C5 | 119.48 (11) | C14—C15—H15B | 109.5 |
| C7—C6—C5 | 117.60 (10) | H15A—C15—H15B | 109.5 |
| N1—C12—C4 | 122.28 (11) | C14—C15—H15C | 109.5 |
| N1—C12—C11 | 117.04 (10) | H15A—C15—H15C | 109.5 |
| C4—C12—C11 | 120.68 (11) | H15B—C15—H15C | 109.5 |
| C9—C8—C7 | 118.69 (11) | O3—C14—C15 | 114.19 (11) |
| C9—C8—H8 | 120.7 | O3—C14—H14A | 104.6 (9) |
| C7—C8—H8 | 120.7 | C15—C14—H14A | 109.3 (9) |
| C8—C9—C10 | 118.31 (11) | O3—C14—H14B | 108.5 (10) |
| C8—C9—H9 | 120.8 | C15—C14—H14B | 109.8 (10) |
| C10—C9—H9 | 120.8 | H14A—C14—H14B | 110.5 (14) |
| C2—C3—C4 | 119.37 (12) | C14—O3—H3O | 111.5 (14) |
| C2—C3—H3 | 120.3 |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O3—H3O···N1i | 0.85 (1) | 2.08 (1) | 2.8258 (19) | 146 (2) |
| C1—H1···O2ii | 0.95 | 2.53 | 3.3381 (19) | 143 |
Symmetry codes: (i) −x+2, −y+2, −z+1; (ii) x+1, y+1, z.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: XU5783).
References
- Calderazzo, F., Marchetti, F., Pampaloni, G. & Passarelli, V. (1999). J. Chem. Soc. Dalton Trans. pp. 4389–4396.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Goss, C. A. & Abruna, H. D. (1985). Inorg. Chem. 24, 4263–4267.
- Ma, Q., Zhu, M. L., Yuan, C. X., Feng, S. S., Lu, L. P. & Wang, Q. M. (2010). Cryst. Growth Des. 10, 1706–1714.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Murphy, D. M., McNamara, K., Richardson, P., Sanchez-Romaguera, V., Winpenny, R. E. P. & Yellowlees, L. J. (2011). Inorg. Chim. Acta, 374, 435–441.
- Paw, W., Connick, W. B. & Eisenberg, R. (1998). Inorg. Chem. 37, 3919–3926. [DOI] [PubMed]
- Paw, W. & Eisenberg, R. (1997). Inorg. Chem. 36, 2287–2293. [DOI] [PubMed]
- Pinczewska, A., Sosna, M., Bloodworth, S., Kilburn, J. D. & Bartlett, P. N. (2012). J. Am. Chem. Soc. 134, 18022–18033. [DOI] [PubMed]
- Poteet, S. A. & MacDonnell, F. M. (2013). Dalton Trans. 42, 13305–13307. [DOI] [PubMed]
- Poteet, S. A., Majewski, M. B., Breitbach, Z. S., Griffith, C. A., Singh, S., Armstrong, D. W., Wolf, M. O. & MacDonnell, F. M. (2013). J. Am. Chem. Soc. 135, 2419–2422. [DOI] [PubMed]
- Rigaku (2008). CrystalClear Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Smith, G. F. & Cagle, F. W. (1947). J. Org. Chem. 12, 781–784. [DOI] [PubMed]
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
- Wu, J. Z., Li, H., Zhang, J. G. & Xu, J. H. (2002). Inorg. Chem. Commun. 5, 71–75.
- Wu, Q., Maskus, M., Pariente, F., Tobalina, F., Fernandez, V. M., Lorenzo, E. & Abruna, H. D. (1996). Anal. Chem. 68, 3688–3696.
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814008241/xu5783sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008241/xu5783Isup2.hkl
Supporting information file. DOI: 10.1107/S1600536814008241/xu5783Isup3.cml
CCDC reference: 996896
Additional supporting information: crystallographic information; 3D view; checkCIF report

