Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 18;70(Pt 5):m185–m186. doi: 10.1107/S1600536814008198

A new polymorph of aqua­bis­(1,10-phenanthroline-κ2 N,N′)copper(II) dinitrate

Mehdi Boutebdja a, Asma Lehleh a, Adel Beghidja a,*, Zouaoui Setifi a, Hocine Merazig a
PMCID: PMC4011280  PMID: 24860316

Abstract

The title mol­ecule, [Cu(C12H8N2)2(H2O)](NO3)2, is a new polymorph of a compound which up to now has been reported to crystallize space groups in C2/c and Cc. The crystal studied was twinned by non-merohedry (final BASF factor of 0.40043) with the structure being solved and refined in P-1. The CuII atom is coordinated by four N atoms from two 1,10-phenanthroline ligands and an O atom from a water mol­ecule in an approximate trigonal–bipyramidal geometry. Discrete entities of one cation and two nitrate anions are formed by water–nitrate O—H⋯O hydrogen bonds. The components are further assembled into a three-dimensional network by C—H⋯O hydrogen bonds.

Related literature  

For structural analyses of the other polymorphs, see: Nakai & Deguchi (1975); Catalan et al. (1995); Szpakolski et al. (2010); Zhou (2011).graphic file with name e-70-0m185-scheme1.jpg

Experimental  

Crystal data  

  • [Cu(C12H8N2)2(H2O)](NO3)2

  • M r = 565.99

  • Triclinic, Inline graphic

  • a = 7.0836 (3) Å

  • b = 11.7898 (3) Å

  • c = 14.2951 (4) Å

  • α = 78.079 (2)°

  • β = 79.862 (3)°

  • γ = 73.782 (3)°

  • V = 1112.68 (7) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 1.05 mm−1

  • T = 150 K

  • 0.12 × 0.10 × 0.08 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • 17314 measured reflections

  • 11903 independent reflections

  • 10562 reflections with I > 2σ(I)

  • R int = 0.041

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.058

  • wR(F 2) = 0.172

  • S = 1.17

  • 11903 reflections

  • 344 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.98 e Å−3

  • Δρmin = −0.63 e Å−3

Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ATOMS (Dowty, 1995); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814008198/im2451sup1.cif

e-70-0m185-sup1.cif (35.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008198/im2451Isup2.hkl

e-70-0m185-Isup2.hkl (651.6KB, hkl)

CCDC reference: 996861

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O1W—H1W⋯O2i 0.79 1.92 2.709 (5) 176
O1W—H2W⋯O6 0.87 1.89 2.718 (5) 159
C2—H2⋯O1ii 0.93 2.57 3.313 (5) 137
C5—H5⋯O5iii 0.93 2.40 3.271 (5) 156
C6—H6⋯O6iv 0.93 2.56 3.417 (6) 154
C8—H8⋯O3v 0.93 2.50 3.194 (5) 131
C17—H17⋯O2vi 0.93 2.49 3.363 (5) 157
C18—H18⋯O1vii 0.93 2.50 3.406 (5) 166
C20—H20⋯O3vii 0.93 2.49 3.357 (5) 155

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Acknowledgments

The authors thank the MESRS (Algeria) for financial support. AL also thanks the DG–RSDT and ANDRU (Direction Générale de la Recherche Scientifique et du Dévelopement Technologique et l’Agence Nationale pour le Développement de la Recherche Universitaire, Algeria) for support through the PNR project.

supplementary crystallographic information

1. Comment

The reported structure of complex (I) is a polymorph of previously reported material. It crystallizes as a non-merohedral twin in the triclinic system with the space group P1, contrary to what has been observed in other structural analyses which three times report the crystal symmetry to correspond to the space group C2/c (Nakai & Deguchi (1975); Szpakolski et al. (2010); Zhou (2011)), while the fourth crystal structure was reported in the space group Cc (Catalan et al., 1995).

Compound (I) has a discrete structure containing monomeric [Cu(H2O)(1,10'-phen)]2+ cations and two counter-balanced nitrate anions which are connected to the cation via O–H···O hydrogen bonds. The Cu(II) ion is coordinated by two 1,10'-phenantroline molecules each acting as a bidentate ligand (through the four nitrogen atoms (N1,N2, N4,N3)) and one water molecule O1w (Fig. 1). The geometry around the metal is of distorted trigonal bipyramidal geometry and all distances are in a normal range. The dihedral angle between the two 1,10'-phenantroline molecules is 34.92 (3)°, while the dihedral angle varies in its analogous between 37.89 (3)° and 53.46 (3)°. In the crystal, molecules are linked by extensive hydrogen bonds involving the nitrate anions and phenantroline and water molecules, producing a three-dimensional network (Fig 2).

2. Experimental

A methanolic solution containing Cu(NO3)2 × 3 H2O (0.1208 g, 0.5 mmol) was added with stirring to a methanolic solution containing 1,10'-phenantroline (0.9 g, 0.5 mmol). After a few minutes a blue green precipitate appears and was filtrated. The blue green filtrate was kept for several weeks at room temperature. Green crystals suitable for X-ray analysis were obtained (yield: 0.20 g, 70% on the basis of Cu(NO3)2.3H2O).

3. Refinement

Water hydrogen atoms were tentatively found in the difference density Fourier map and were refined with an isotropic displacement parameter of Uiso(H) = 1.5 Ueq(O1W). O—H distances were restrained to be 0.9 Å within a standard deviation of 0.01 and the H···H contacts were restraint to 1.40 Å with a standard deviation of 0.02. A l l other hydrogen atoms were placed in calculated positions with C —H distances of 0.93–0.96 Å for aromatic H atoms with Uiso(H) =1.2 Ueq(C).

The presence of a non-merohedral twin was identified using TwinRotMat within PLATON (Spek, 2009) (twin law: (0.958 0.013 0.071), (0.979 -0.994 0.036), (0.979 0.006 -0.964)) reducing the conventional R-factor from 0.11 to 0.057, with a final BASF factor (HKLF 5 format) of 0.40043. Maximum and minimum residual electron densities were 0.98 eÅ-3 (0.95 Å from Cu01) and -0.63 eÅ-3 (0.93 Å from Cu01 ), respectively.

Figures

Fig. 1.

Fig. 1.

View of the title compound with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Fig. 2.

Fig. 2.

Partial view of the crystal structure of the title compound showing the hydrogen bonds.

Crystal data

[Cu(C12H8N2)2(H2O)](NO3)2 Z = 2
Mr = 565.99 F(000) = 578
Triclinic, P1 Dx = 1.689 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 7.0836 (3) Å Cell parameters from 11062 reflections
b = 11.7898 (3) Å θ = 1.8–34.6°
c = 14.2951 (4) Å µ = 1.05 mm1
α = 78.079 (2)° T = 150 K
β = 79.862 (3)° Block, green
γ = 73.782 (3)° 0.12 × 0.10 × 0.08 mm
V = 1112.68 (7) Å3

Data collection

Bruker APEXII CCD diffractometer 10562 reflections with I > 2σ(I)
Radiation source: Rotating Anode Rint = 0.041
Graphite monochromator θmax = 27.9°, θmin = 2.1°
Detector resolution: 18.4 pixels mm-1 h = −9→9
φ and ω scans k = −15→15
17314 measured reflections l = −18→18
11903 independent reflections

Refinement

Refinement on F2 3 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058 H-atom parameters constrained
wR(F2) = 0.172 w = 1/[Σ2(FO2) + (0.0916P)2 + 1.1415P] where P = (FO2 + 2FC2)/3
S = 1.17 (Δ/σ)max = 0.001
11903 reflections Δρmax = 0.98 e Å3
344 parameters Δρmin = −0.63 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > 2sigma(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu01 0.88124 (7) 0.26741 (4) 0.24554 (3) 0.0110 (1)
O1W 1.1790 (4) 0.2580 (3) 0.2736 (2) 0.0211 (9)
N1 0.9959 (5) 0.0992 (3) 0.2189 (2) 0.0107 (8)
N2 0.7695 (5) 0.1813 (3) 0.3734 (2) 0.0102 (8)
N3 0.8143 (5) 0.3546 (3) 0.1125 (2) 0.0108 (8)
N4 0.8066 (5) 0.4349 (3) 0.2743 (2) 0.0106 (8)
C1 1.1142 (6) 0.0599 (3) 0.1420 (3) 0.0138 (10)
C2 1.2069 (6) −0.0618 (4) 0.1400 (3) 0.0166 (11)
C3 1.1773 (6) −0.1452 (3) 0.2200 (3) 0.0157 (11)
C4 1.0526 (6) −0.1077 (3) 0.3020 (3) 0.0123 (10)
C5 1.0093 (6) −0.1886 (3) 0.3887 (3) 0.0158 (11)
C6 0.8865 (6) −0.1471 (4) 0.4654 (3) 0.0165 (11)
C7 0.8004 (6) −0.0215 (3) 0.4637 (3) 0.0130 (10)
C8 0.6764 (6) 0.0268 (4) 0.5424 (3) 0.0165 (11)
C9 0.6022 (6) 0.1487 (4) 0.5337 (3) 0.0159 (11)
C10 0.6507 (6) 0.2242 (4) 0.4478 (3) 0.0144 (10)
C11 0.9666 (5) 0.0160 (3) 0.2980 (3) 0.0106 (10)
C12 0.8408 (5) 0.0607 (3) 0.3808 (3) 0.0102 (9)
C13 0.8086 (6) 0.3120 (3) 0.0336 (3) 0.0129 (10)
C14 0.7705 (6) 0.3877 (4) −0.0548 (3) 0.0147 (11)
C15 0.7352 (6) 0.5097 (4) −0.0617 (3) 0.0143 (10)
C16 0.7332 (5) 0.5576 (3) 0.0216 (3) 0.0115 (10)
C17 0.6900 (6) 0.6839 (3) 0.0236 (3) 0.0146 (10)
C18 0.6955 (6) 0.7250 (3) 0.1053 (3) 0.0143 (10)
C19 0.7375 (5) 0.6431 (3) 0.1932 (3) 0.0120 (10)
C20 0.7436 (6) 0.6794 (3) 0.2806 (3) 0.0133 (10)
C21 0.7790 (6) 0.5936 (3) 0.3618 (3) 0.0145 (11)
C22 0.8106 (6) 0.4717 (3) 0.3562 (3) 0.0125 (10)
C23 0.7737 (5) 0.4760 (3) 0.1066 (3) 0.0099 (9)
C24 0.7716 (5) 0.5196 (3) 0.1939 (3) 0.0103 (10)
O1 0.6976 (6) 0.0152 (3) 0.0982 (2) 0.0341 (11)
O2 0.5277 (5) 0.1630 (3) 0.1717 (2) 0.0251 (9)
O3 0.5629 (5) −0.0219 (3) 0.2460 (2) 0.0229 (9)
N5 0.5964 (5) 0.0505 (3) 0.1718 (2) 0.0143 (9)
O4 1.2876 (6) 0.5301 (3) 0.2707 (2) 0.0291 (10)
O5 1.3245 (5) 0.5481 (3) 0.4138 (2) 0.0242 (9)
O6 1.2436 (5) 0.3916 (3) 0.3929 (2) 0.0204 (8)
N6 1.2854 (5) 0.4914 (3) 0.3584 (2) 0.0143 (9)
H1 1.13600 0.11560 0.08750 0.0170*
H1W 1.28200 0.23300 0.24360 0.0220*
H2 1.28740 −0.08550 0.08510 0.0200*
H2W 1.19590 0.31520 0.29900 0.0220*
H3 1.23910 −0.22600 0.22000 0.0190*
H5 1.06640 −0.27040 0.39210 0.0190*
H6 0.85780 −0.20120 0.51990 0.0200*
H8 0.64570 −0.02320 0.59910 0.0200*
H9 0.51940 0.18170 0.58470 0.0190*
H10 0.59810 0.30650 0.44320 0.0170*
H13 0.83060 0.22980 0.03720 0.0150*
H14 0.76920 0.35510 −0.10850 0.0180*
H15 0.71300 0.56000 −0.12020 0.0170*
H17 0.65770 0.73840 −0.03180 0.0180*
H18 0.67180 0.80690 0.10420 0.0170*
H20 0.72390 0.76000 0.28340 0.0160*
H21 0.78200 0.61630 0.42000 0.0170*
H22 0.83510 0.41490 0.41130 0.0150*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu01 0.0172 (3) 0.0060 (2) 0.0083 (2) −0.0009 (2) −0.0024 (2) 0.0000 (2)
O1W 0.0146 (14) 0.0201 (15) 0.0317 (16) −0.0024 (12) −0.0021 (12) −0.0148 (13)
N1 0.0125 (15) 0.0102 (15) 0.0102 (14) −0.0040 (12) −0.0032 (11) −0.0002 (11)
N2 0.0110 (15) 0.0111 (15) 0.0096 (14) −0.0031 (12) −0.0049 (11) −0.0010 (11)
N3 0.0130 (15) 0.0092 (14) 0.0099 (14) −0.0026 (12) −0.0022 (11) −0.0005 (11)
N4 0.0115 (15) 0.0081 (14) 0.0108 (14) −0.0005 (12) −0.0027 (11) 0.0002 (11)
C1 0.0154 (18) 0.0138 (18) 0.0122 (17) −0.0034 (15) −0.0023 (14) −0.0022 (14)
C2 0.0155 (19) 0.0184 (19) 0.0164 (19) −0.0011 (15) −0.0027 (15) −0.0077 (15)
C3 0.0165 (19) 0.0092 (17) 0.022 (2) 0.0004 (15) −0.0066 (15) −0.0054 (14)
C4 0.0140 (18) 0.0093 (17) 0.0161 (18) −0.0052 (14) −0.0070 (14) 0.0000 (13)
C5 0.0183 (19) 0.0083 (17) 0.023 (2) −0.0062 (15) −0.0109 (16) 0.0033 (14)
C6 0.020 (2) 0.0142 (18) 0.0170 (19) −0.0097 (16) −0.0078 (15) 0.0058 (14)
C7 0.0124 (17) 0.0143 (18) 0.0148 (18) −0.0077 (14) −0.0068 (14) 0.0025 (14)
C8 0.0141 (18) 0.027 (2) 0.0106 (17) −0.0117 (17) −0.0031 (14) 0.0020 (15)
C9 0.0128 (18) 0.025 (2) 0.0106 (17) −0.0062 (16) −0.0013 (14) −0.0027 (15)
C10 0.0130 (17) 0.0174 (19) 0.0133 (17) −0.0031 (15) −0.0032 (14) −0.0034 (14)
C11 0.0109 (17) 0.0102 (17) 0.0113 (16) −0.0029 (14) −0.0047 (13) −0.0003 (13)
C12 0.0094 (16) 0.0114 (17) 0.0108 (16) −0.0042 (14) −0.0038 (13) 0.0003 (13)
C13 0.0138 (18) 0.0114 (17) 0.0137 (18) −0.0034 (14) −0.0022 (14) −0.0022 (14)
C14 0.0154 (18) 0.020 (2) 0.0095 (17) −0.0039 (16) −0.0043 (14) −0.0026 (14)
C15 0.0150 (18) 0.0174 (19) 0.0100 (17) −0.0040 (15) −0.0044 (14) 0.0014 (14)
C16 0.0084 (16) 0.0144 (18) 0.0107 (17) −0.0031 (14) −0.0033 (13) 0.0023 (13)
C17 0.0138 (18) 0.0118 (18) 0.0149 (18) −0.0025 (15) −0.0031 (14) 0.0054 (14)
C18 0.0116 (17) 0.0097 (17) 0.0188 (19) −0.0003 (14) −0.0023 (14) 0.0007 (14)
C19 0.0092 (16) 0.0096 (17) 0.0148 (17) −0.0001 (14) −0.0005 (13) −0.0010 (13)
C20 0.0129 (17) 0.0083 (17) 0.0188 (19) −0.0026 (14) −0.0006 (14) −0.0039 (14)
C21 0.0178 (19) 0.0132 (18) 0.0137 (18) −0.0031 (15) −0.0019 (14) −0.0058 (14)
C22 0.0146 (18) 0.0098 (17) 0.0118 (17) −0.0024 (14) −0.0029 (14) 0.0009 (13)
C23 0.0080 (16) 0.0094 (16) 0.0116 (17) −0.0018 (13) −0.0019 (13) −0.0004 (13)
C24 0.0086 (16) 0.0098 (17) 0.0117 (17) −0.0008 (14) −0.0033 (13) −0.0001 (13)
O1 0.050 (2) 0.0320 (19) 0.0223 (16) −0.0173 (17) 0.0127 (15) −0.0140 (14)
O2 0.0237 (16) 0.0130 (14) 0.0312 (17) −0.0005 (12) 0.0022 (13) 0.0023 (12)
O3 0.0301 (17) 0.0167 (15) 0.0186 (15) −0.0072 (13) −0.0020 (12) 0.0053 (11)
N5 0.0136 (16) 0.0152 (16) 0.0143 (15) −0.0048 (13) −0.0033 (12) 0.0003 (12)
O4 0.044 (2) 0.0313 (18) 0.0126 (14) −0.0133 (16) −0.0072 (13) 0.0035 (12)
O5 0.0317 (17) 0.0230 (16) 0.0228 (16) −0.0091 (14) −0.0097 (13) −0.0067 (12)
O6 0.0288 (16) 0.0150 (14) 0.0193 (14) −0.0079 (13) −0.0094 (12) 0.0014 (11)
N6 0.0125 (15) 0.0132 (16) 0.0156 (16) 0.0001 (13) −0.0039 (12) −0.0016 (12)

Geometric parameters (Å, º)

Cu01—O1W 2.184 (3) C9—C10 1.410 (6)
Cu01—N1 2.010 (3) C11—C12 1.448 (6)
Cu01—N2 2.042 (3) C13—C14 1.409 (6)
Cu01—N3 2.034 (3) C14—C15 1.375 (6)
Cu01—N4 2.006 (3) C15—C16 1.416 (6)
O1W—H1W 0.7900 C16—C17 1.439 (5)
O1W—H2W 0.8700 C16—C23 1.404 (6)
O1—N5 1.242 (4) C17—C18 1.364 (6)
O2—N5 1.279 (5) C18—C19 1.439 (6)
O3—N5 1.249 (4) C19—C24 1.406 (5)
O4—N6 1.241 (4) C19—C20 1.413 (6)
O5—N6 1.245 (5) C20—C21 1.382 (6)
O6—N6 1.272 (5) C21—C22 1.408 (5)
N1—C1 1.340 (5) C23—C24 1.441 (6)
N1—C11 1.363 (5) C1—H1 0.9300
N2—C12 1.358 (5) C2—H2 0.9300
N2—C10 1.328 (5) C3—H3 0.9300
N3—C13 1.337 (5) C5—H5 0.9300
N3—C23 1.366 (5) C6—H6 0.9300
N4—C22 1.337 (5) C8—H8 0.9300
N4—C24 1.367 (5) C9—H9 0.9300
C1—C2 1.405 (6) C10—H10 0.9300
C2—C3 1.373 (6) C13—H13 0.9300
C3—C4 1.408 (6) C14—H14 0.9300
C4—C11 1.408 (5) C15—H15 0.9300
C4—C5 1.443 (6) C17—H17 0.9300
C5—C6 1.359 (6) C18—H18 0.9300
C6—C7 1.432 (6) C20—H20 0.9300
C7—C8 1.414 (6) C21—H21 0.9300
C7—C12 1.409 (6) C22—H22 0.9300
C8—C9 1.373 (6)
O1W—Cu01—N1 85.46 (14) C13—C14—C15 120.1 (4)
O1W—Cu01—N2 101.65 (13) C14—C15—C16 119.0 (4)
O1W—Cu01—N3 114.86 (13) C15—C16—C23 117.3 (3)
O1W—Cu01—N4 86.34 (14) C15—C16—C17 123.7 (4)
N1—Cu01—N2 82.61 (13) C17—C16—C23 119.0 (4)
N1—Cu01—N3 100.51 (13) C16—C17—C18 121.2 (4)
N1—Cu01—N4 171.78 (15) C17—C18—C19 120.8 (3)
N2—Cu01—N3 143.48 (15) C18—C19—C20 123.8 (3)
N2—Cu01—N4 99.69 (13) C18—C19—C24 118.9 (4)
N3—Cu01—N4 82.40 (13) C20—C19—C24 117.3 (4)
Cu01—O1W—H2W 118.00 C19—C20—C21 119.2 (3)
H1W—O1W—H2W 105.00 C20—C21—C22 119.8 (4)
Cu01—O1W—H1W 129.00 N4—C22—C21 122.2 (4)
C1—N1—C11 117.5 (3) C16—C23—C24 119.8 (3)
Cu01—N1—C1 129.8 (3) N3—C23—C16 123.5 (3)
Cu01—N1—C11 112.0 (2) N3—C23—C24 116.7 (3)
Cu01—N2—C10 130.8 (3) C19—C24—C23 120.2 (4)
Cu01—N2—C12 111.1 (3) N4—C24—C19 123.4 (4)
C10—N2—C12 118.1 (3) N4—C24—C23 116.3 (3)
C13—N3—C23 117.9 (3) N1—C1—H1 119.00
Cu01—N3—C13 130.6 (3) C2—C1—H1 119.00
Cu01—N3—C23 111.5 (2) C1—C2—H2 120.00
Cu01—N4—C24 112.6 (2) C3—C2—H2 120.00
Cu01—N4—C22 128.8 (3) C4—C3—H3 120.00
C22—N4—C24 118.1 (3) C2—C3—H3 120.00
O2—N5—O3 119.6 (3) C4—C5—H5 119.00
O1—N5—O2 119.2 (3) C6—C5—H5 120.00
O1—N5—O3 121.1 (3) C7—C6—H6 119.00
O4—N6—O6 119.8 (3) C5—C6—H6 119.00
O4—N6—O5 121.3 (4) C7—C8—H8 121.00
O5—N6—O6 118.9 (3) C9—C8—H8 121.00
N1—C1—C2 122.9 (4) C8—C9—H9 120.00
C1—C2—C3 119.3 (4) C10—C9—H9 120.00
C2—C3—C4 119.6 (3) C9—C10—H10 119.00
C3—C4—C11 117.4 (4) N2—C10—H10 119.00
C5—C4—C11 118.9 (4) N3—C13—H13 119.00
C3—C4—C5 123.7 (3) C14—C13—H13 119.00
C4—C5—C6 121.0 (3) C13—C14—H14 120.00
C5—C6—C7 121.1 (4) C15—C14—H14 120.00
C6—C7—C8 123.4 (4) C16—C15—H15 121.00
C6—C7—C12 119.7 (4) C14—C15—H15 121.00
C8—C7—C12 116.8 (3) C16—C17—H17 119.00
C7—C8—C9 118.9 (4) C18—C17—H17 119.00
C8—C9—C10 120.3 (4) C17—C18—H18 120.00
N2—C10—C9 122.0 (4) C19—C18—H18 120.00
N1—C11—C4 123.3 (4) C21—C20—H20 120.00
C4—C11—C12 120.1 (4) C19—C20—H20 120.00
N1—C11—C12 116.6 (3) C20—C21—H21 120.00
N2—C12—C7 123.9 (3) C22—C21—H21 120.00
N2—C12—C11 117.0 (3) C21—C22—H22 119.00
C7—C12—C11 119.1 (3) N4—C22—H22 119.00
N3—C13—C14 122.1 (3)
O1W—Cu01—N1—C1 −75.3 (4) C22—N4—C24—C23 178.4 (4)
O1W—Cu01—N1—C11 95.0 (3) N1—C1—C2—C3 −0.4 (7)
N2—Cu01—N1—C1 −177.7 (4) C1—C2—C3—C4 0.9 (7)
N2—Cu01—N1—C11 −7.4 (3) C2—C3—C4—C5 178.8 (4)
N3—Cu01—N1—C1 39.2 (4) C2—C3—C4—C11 −1.3 (6)
N3—Cu01—N1—C11 −150.6 (3) C3—C4—C5—C6 −179.5 (4)
O1W—Cu01—N2—C10 99.2 (4) C11—C4—C5—C6 0.5 (6)
O1W—Cu01—N2—C12 −77.6 (3) C3—C4—C11—N1 1.1 (6)
N1—Cu01—N2—C10 −177.0 (4) C3—C4—C11—C12 −178.5 (4)
N1—Cu01—N2—C12 6.2 (3) C5—C4—C11—N1 −178.9 (4)
N3—Cu01—N2—C10 −79.3 (4) C5—C4—C11—C12 1.5 (6)
N3—Cu01—N2—C12 103.9 (3) C4—C5—C6—C7 −1.7 (7)
N4—Cu01—N2—C10 11.0 (4) C5—C6—C7—C8 −178.1 (4)
N4—Cu01—N2—C12 −165.8 (3) C5—C6—C7—C12 1.0 (7)
O1W—Cu01—N3—C13 101.9 (4) C6—C7—C8—C9 179.6 (4)
O1W—Cu01—N3—C23 −76.7 (3) C12—C7—C8—C9 0.5 (6)
N1—Cu01—N3—C13 12.1 (4) C6—C7—C12—N2 −178.5 (4)
N1—Cu01—N3—C23 −166.5 (3) C6—C7—C12—C11 1.0 (6)
N2—Cu01—N3—C13 −79.7 (4) C8—C7—C12—N2 0.6 (6)
N2—Cu01—N3—C23 101.8 (3) C8—C7—C12—C11 −179.9 (4)
N4—Cu01—N3—C13 −175.7 (4) C7—C8—C9—C10 −0.5 (7)
N4—Cu01—N3—C23 5.7 (3) C8—C9—C10—N2 −0.6 (7)
O1W—Cu01—N4—C22 −62.0 (4) N1—C11—C12—N2 −2.3 (5)
O1W—Cu01—N4—C24 109.3 (3) N1—C11—C12—C7 178.1 (4)
N2—Cu01—N4—C22 39.2 (4) C4—C11—C12—N2 177.3 (4)
N2—Cu01—N4—C24 −149.6 (3) C4—C11—C12—C7 −2.2 (6)
N3—Cu01—N4—C22 −177.7 (4) N3—C13—C14—C15 −0.8 (7)
N3—Cu01—N4—C24 −6.4 (3) C13—C14—C15—C16 −1.5 (7)
Cu01—N1—C1—C2 170.0 (3) C14—C15—C16—C17 −177.4 (4)
C11—N1—C1—C2 0.2 (6) C14—C15—C16—C23 1.8 (6)
Cu01—N1—C11—C4 −172.1 (3) C15—C16—C17—C18 −178.2 (4)
Cu01—N1—C11—C12 7.5 (4) C23—C16—C17—C18 2.6 (6)
C1—N1—C11—C4 −0.6 (6) C15—C16—C23—N3 0.0 (6)
C1—N1—C11—C12 179.0 (4) C15—C16—C23—C24 −179.3 (4)
Cu01—N2—C10—C9 −174.9 (3) C17—C16—C23—N3 179.3 (4)
C12—N2—C10—C9 1.7 (6) C17—C16—C23—C24 −0.1 (6)
Cu01—N2—C12—C7 175.5 (3) C16—C17—C18—C19 −2.4 (7)
Cu01—N2—C12—C11 −4.0 (4) C17—C18—C19—C20 −179.3 (4)
C10—N2—C12—C7 −1.7 (6) C17—C18—C19—C24 −0.4 (6)
C10—N2—C12—C11 178.7 (4) C18—C19—C20—C21 177.9 (4)
Cu01—N3—C13—C14 −175.9 (3) C24—C19—C20—C21 −1.0 (6)
C23—N3—C13—C14 2.6 (6) C18—C19—C24—N4 −177.9 (4)
Cu01—N3—C23—C16 176.5 (3) C18—C19—C24—C23 3.0 (6)
Cu01—N3—C23—C24 −4.1 (4) C20—C19—C24—N4 1.1 (6)
C13—N3—C23—C16 −2.2 (6) C20—C19—C24—C23 −178.1 (4)
C13—N3—C23—C24 177.1 (4) C19—C20—C21—C22 0.7 (6)
Cu01—N4—C22—C21 171.3 (3) C20—C21—C22—N4 −0.4 (7)
C24—N4—C22—C21 0.4 (6) N3—C23—C24—N4 −1.3 (5)
Cu01—N4—C24—C19 −173.1 (3) N3—C23—C24—C19 177.9 (4)
Cu01—N4—C24—C23 6.1 (4) C16—C23—C24—N4 178.1 (4)
C22—N4—C24—C19 −0.7 (6) C16—C23—C24—C19 −2.7 (6)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O1W—H1W···O2i 0.79 1.92 2.709 (5) 176
O1W—H2W···O6 0.87 1.89 2.718 (5) 159
C2—H2···O1ii 0.93 2.57 3.313 (5) 137
C5—H5···O5iii 0.93 2.40 3.271 (5) 156
C6—H6···O6iv 0.93 2.56 3.417 (6) 154
C8—H8···O3v 0.93 2.50 3.194 (5) 131
C10—H10···O6vi 0.93 2.60 3.131 (6) 117
C14—H14···O4vii 0.93 2.47 3.102 (5) 125
C15—H15···O4vii 0.93 2.59 3.157 (5) 120
C17—H17···O2viii 0.93 2.49 3.363 (5) 157
C18—H18···O1ix 0.93 2.50 3.406 (5) 166
C20—H20···O3ix 0.93 2.49 3.357 (5) 155

Symmetry codes: (i) x+1, y, z; (ii) −x+2, −y, −z; (iii) x, y−1, z; (iv) −x+2, −y, −z+1; (v) −x+1, −y, −z+1; (vi) x−1, y, z; (vii) −x+2, −y+1, −z; (viii) −x+1, −y+1, −z; (ix) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: IM2451).

References

  1. Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Catalan, K. J., Jackson, S., Zubkowski, J. D., Perry, D. L., Valente, E. J., Feliu, L. A. & Polanco, A. (1995). Polyhedron, 14, 2165–2171.
  3. Dowty, E. (1995). ATOMS Shape Software, Kingsport, Tennessee, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Nakai, H. & Deguchi, Y. (1975). Bull. Chem. Soc. Jpn, 48, 2557–2560.
  6. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  7. Szpakolski, K. B., Latham, K., Rix, C. J., White, J. M., Moubaraki, B. & Murray, K. S. (2010). Chem. Eur. J. 16, 1691–1696. [DOI] [PubMed]
  8. Zhou, Y. H. (2011). Huaibei Shifan Daxue Xuebao (Ziran Kexueban), 32, 33.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814008198/im2451sup1.cif

e-70-0m185-sup1.cif (35.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008198/im2451Isup2.hkl

e-70-0m185-Isup2.hkl (651.6KB, hkl)

CCDC reference: 996861

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES