Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 26;70(Pt 5):o602. doi: 10.1107/S1600536814008952

N-[Eth­yl(2-hy­droxy­eth­yl)carbamo­thio­yl]-2-methyl­benzamide

Bohari M Yamin a, Sara Maira M Hizam b, Siti Fairus M Yusoff b, Siti Aishah Hasbullah b,*
PMCID: PMC4011282  PMID: 24860396

Abstract

The title compound, C13H18N2O2S, adopts a cis conformation between the methyl­benzoyl and thiono groups across their thio­urea C—N bond. However, the methyl­benzoyl group and N2CS thio­urea moiety are twisted by 15.03 (3)°. In the molecule there is an N—H⋯O hydrogen bond. In the crystal, mol­ecules are linked by O—H⋯O inter­actions, generating chains extending along the c-axis direction.

Related literature  

For bond-length data, see: Allen et al. (1987). For related structures of thio­urea derivatives, see: Awang et al. (2013); Sapari et al. (2013). graphic file with name e-70-0o602-scheme1.jpg

Experimental  

Crystal data  

  • C13H18N2O2S

  • M r = 266.35

  • Monoclinic, Inline graphic

  • a = 11.393 (4) Å

  • b = 8.989 (3) Å

  • c = 14.467 (5) Å

  • β = 109.940 (9)°

  • V = 1392.7 (7) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.23 mm−1

  • T = 296 K

  • 0.35 × 0.34 × 0.06 mm

Data collection  

  • Bruker SMART APEX CCD area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.924, T max = 0.986

  • 28196 measured reflections

  • 2583 independent reflections

  • 2005 reflections with I > 2σ(I)

  • R int = 0.048

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.036

  • wR(F 2) = 0.088

  • S = 1.06

  • 2583 reflections

  • 169 parameters

  • 1 restraint

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.20 e Å−3

  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814008952/lr2125sup1.cif

e-70-0o602-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008952/lr2125Isup2.hkl

e-70-0o602-Isup2.hkl (126.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008952/lr2125Isup3.cml

CCDC reference: 998473

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2 0.86 1.98 2.750 (2) 149
O2—H2A⋯O1i 0.81 (2) 1.91 (2) 2.716 (2) 171 (2)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors would like to thank Universiti Kebangsaan Malaysia and the Ministry of Science and Technology, Malaysia, for research grants GUP-2103-022, DIP-2012-11, LRGS/BU/2011/USM-UKM/PG-02 and the Centre of Research and Instrumentation (CRIM) for research facilities.

supplementary crystallographic information

1. Introduction

2. Experimental

2.1. Synthesis and crystallization

An acetone (30 ml) solution of 2-(ethyl­amino)­ethanol (0.18 g, 2 mmol) was added to a round-bottomed flask containing 2-methyl­benzoyl iso­thio­cyanate (0.31 g,2 mmol). The mixture was refluxed for 3h. After cooling the solution was filtered off and the filtrate was left to evaporate at room temperature. The solid formed was washed with water and cold ethanol. Crystals suitable for X-ray study were obtained by recrystallization from DMSO.

2.2. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 1. All H atoms attached to C and N atoms were fixed geometrically and treated as riding with C—H= 0.93-0.97Å and N–H = 0.86Å with Uiso(H)= 1.2Ueq[C (methyl­ene and aromatic),N] and 1.5 Ueq [C (methyl)]. The hydroxyl hydrogen atom was located from Fourier map and refined isotropically with O—H restraint to 0.81Å with esd of 0.01.

3. Results and discussion

The carbonoyl­thio­urea derivatives with a secondary amine group at the terminal thio­urea moiety are expected to adopt a cis conformation with respect to the position of the carbonoyl against the thiono group. Such a configuration will allow the ligand to chelate with metals in bidentate manner. Thus, 2,4-di­chloro-N-[ethyl­(hy­droxy­ethyl)­carbamo­thioyl]benzamide (Sapari et al.,2013) and N[ethyl­(hy­droxy­ethyl)­carbamo­thioyl]-2-iodo-benzamide (Awang et al., 2013) adopt the said conformation. The title compound is analogous to the two compounds but having a methyl group attached at position-2 of the benzene ring (Fig.1). However, the title molecule maintains a cis conformation between the carbonyl and thiono groups across the C8—N1 bond and twisted by torsion angle of O1—C8—N1—C9 and S1—C9—N1—C8 of 7.1 (3)and 47.1 (2)° respectively. Both S1/N1/N2/C9 thio­urea moiety and (C1—C8) benzyl fragments are planar with maximum deviation of 0.031 (2)Å for C4 atom from the least square plane of the benzyl fragment. The two planes make dihedral angle of 15.03 (3)°. The bond lengths and angles are in normal ranges (Allen et al.,1987) and comparable to those in the two analogs. There is an intra­molecular hydrogen bond N1–H1A···O2 between the amido hydrogen and hydroxyl oxygen atom. In the crystal structure, the molecules are linked by O2–H2A···O1 inter­molecular hydrogen bond (see Table 1 for symmetry codes) to form one-dimensional chains along the c-axis direction (Fig.2). In addition, there is a C—H.. π bond between H12B and (C1—C6) centroid (-x,1-y,-z) with the H12B···Cg distance of 2.84Å and C12—H12B—Cg angle, 137°.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I), with displacement ellipsods drawn at the 50% probability level. The dashed line indicates the intramolecular hydrogen bond.

Fig. 2.

Fig. 2.

Packing of (I) viewed down the a-axis. The dashed lines indicate intermolecular hydrogen bonds.

Crystal data

C13H18N2O2S F(000) = 568
Mr = 266.35 Dx = 1.270 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 21535 reflections
a = 11.393 (4) Å θ = 2.8–26.5°
b = 8.989 (3) Å µ = 0.23 mm1
c = 14.467 (5) Å T = 296 K
β = 109.940 (9)° Block, colorless
V = 1392.7 (7) Å3 0.35 × 0.34 × 0.06 mm
Z = 4

Data collection

Bruker SMART APEX CCD area-detector diffractometer 2583 independent reflections
Radiation source: fine-focus sealed tube 2005 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.048
Detector resolution: 83.66 pixels mm-1 θmax = 25.5°, θmin = 3.6°
ω scans h = −13→13
Absorption correction: multi-scan (SADABS; Bruker, 2009) k = −10→10
Tmin = 0.924, Tmax = 0.986 l = −17→17
28196 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0285P)2 + 0.6558P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max < 0.001
2583 reflections Δρmax = 0.20 e Å3
169 parameters Δρmin = −0.20 e Å3
1 restraint Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0087 (13)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.41046 (5) 0.21117 (6) 0.04784 (4) 0.05354 (18)
O1 0.13506 (12) 0.29922 (15) −0.09305 (9) 0.0484 (3)
O2 0.19987 (15) 0.33465 (18) 0.26307 (10) 0.0605 (4)
N1 0.19870 (12) 0.29892 (16) 0.07400 (10) 0.0349 (3)
H1A 0.1715 0.2966 0.1226 0.042*
N2 0.37657 (13) 0.41992 (16) 0.16698 (10) 0.0360 (3)
C1 −0.06300 (17) 0.3318 (2) 0.04619 (13) 0.0440 (4)
H1 −0.0132 0.4036 0.0876 0.053*
C2 −0.18157 (19) 0.3051 (3) 0.04839 (16) 0.0563 (6)
H2 −0.2126 0.3604 0.0893 0.068*
C3 −0.25302 (18) 0.1954 (3) −0.01084 (16) 0.0588 (6)
H3 −0.3319 0.1741 −0.0086 0.071*
C4 −0.20788 (17) 0.1171 (2) −0.07337 (15) 0.0516 (5)
H4 −0.2572 0.0427 −0.1123 0.062*
C5 −0.09168 (16) 0.1453 (2) −0.08036 (12) 0.0399 (4)
C6 −0.01715 (15) 0.25332 (19) −0.01686 (12) 0.0346 (4)
C7 −0.0495 (2) 0.0586 (2) −0.15221 (14) 0.0544 (5)
H7A −0.1073 −0.0209 −0.1794 0.082*
H7B 0.0320 0.0181 −0.1190 0.082*
H7C −0.0464 0.1232 −0.2041 0.082*
C8 0.11165 (16) 0.28421 (18) −0.01751 (12) 0.0347 (4)
C9 0.32863 (15) 0.31759 (18) 0.09763 (12) 0.0345 (4)
C10 0.51197 (17) 0.4398 (2) 0.21078 (14) 0.0500 (5)
H10A 0.5529 0.3457 0.2089 0.060*
H10B 0.5326 0.4682 0.2792 0.060*
C11 0.5611 (2) 0.5562 (3) 0.15845 (18) 0.0699 (7)
H11A 0.5440 0.5266 0.0913 0.105*
H11B 0.6497 0.5665 0.1905 0.105*
H11C 0.5211 0.6496 0.1602 0.105*
C12 0.30146 (18) 0.5213 (2) 0.20352 (13) 0.0428 (4)
H12A 0.2226 0.5397 0.1514 0.051*
H12B 0.3449 0.6156 0.2205 0.051*
C13 0.2756 (2) 0.4621 (3) 0.29216 (14) 0.0573 (6)
H13A 0.3534 0.4367 0.3436 0.069*
H13B 0.2332 0.5370 0.3175 0.069*
H2A 0.187 (2) 0.300 (3) 0.3107 (13) 0.086*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0491 (3) 0.0548 (3) 0.0672 (4) −0.0036 (2) 0.0334 (3) −0.0109 (3)
O1 0.0528 (8) 0.0629 (9) 0.0344 (7) −0.0094 (7) 0.0212 (6) −0.0071 (6)
O2 0.0835 (11) 0.0669 (10) 0.0426 (8) −0.0108 (8) 0.0366 (8) 0.0027 (7)
N1 0.0331 (7) 0.0443 (9) 0.0310 (7) −0.0087 (6) 0.0154 (6) −0.0054 (6)
N2 0.0360 (8) 0.0361 (8) 0.0327 (7) −0.0062 (6) 0.0075 (6) 0.0006 (6)
C1 0.0438 (10) 0.0458 (11) 0.0438 (10) −0.0005 (8) 0.0166 (8) 0.0022 (9)
C2 0.0465 (12) 0.0715 (15) 0.0579 (12) 0.0127 (11) 0.0271 (10) 0.0137 (11)
C3 0.0309 (10) 0.0753 (15) 0.0669 (14) −0.0008 (10) 0.0124 (10) 0.0274 (12)
C4 0.0380 (11) 0.0535 (13) 0.0514 (12) −0.0092 (9) 0.0000 (9) 0.0140 (10)
C5 0.0364 (9) 0.0389 (10) 0.0362 (9) −0.0025 (8) 0.0015 (7) 0.0094 (8)
C6 0.0338 (9) 0.0350 (9) 0.0331 (9) −0.0017 (7) 0.0092 (7) 0.0051 (7)
C7 0.0601 (13) 0.0485 (12) 0.0466 (11) −0.0125 (10) 0.0078 (10) −0.0101 (9)
C8 0.0410 (9) 0.0300 (9) 0.0353 (9) −0.0045 (7) 0.0161 (8) −0.0052 (7)
C9 0.0372 (9) 0.0346 (9) 0.0337 (9) −0.0058 (7) 0.0146 (7) 0.0041 (7)
C10 0.0376 (10) 0.0569 (12) 0.0442 (11) −0.0096 (9) −0.0007 (8) 0.0021 (9)
C11 0.0515 (13) 0.0740 (16) 0.0800 (16) −0.0247 (12) 0.0170 (12) 0.0045 (13)
C12 0.0530 (11) 0.0336 (10) 0.0396 (10) −0.0037 (8) 0.0127 (8) −0.0036 (8)
C13 0.0747 (15) 0.0627 (14) 0.0372 (10) 0.0000 (11) 0.0227 (10) −0.0080 (9)

Geometric parameters (Å, º)

S1—C9 1.6617 (17) C4—H4 0.9300
O1—C8 1.2176 (19) C5—C6 1.406 (2)
O2—C13 1.410 (3) C5—C7 1.503 (3)
O2—H2A 0.815 (10) C6—C8 1.497 (2)
N1—C8 1.363 (2) C7—H7A 0.9600
N1—C9 1.411 (2) C7—H7B 0.9600
N1—H1A 0.8600 C7—H7C 0.9600
N2—C9 1.333 (2) C10—C11 1.507 (3)
N2—C10 1.465 (2) C10—H10A 0.9700
N2—C12 1.467 (2) C10—H10B 0.9700
C1—C2 1.383 (3) C11—H11A 0.9600
C1—C6 1.388 (2) C11—H11B 0.9600
C1—H1 0.9300 C11—H11C 0.9600
C2—C3 1.376 (3) C12—C13 1.507 (3)
C2—H2 0.9300 C12—H12A 0.9700
C3—C4 1.377 (3) C12—H12B 0.9700
C3—H3 0.9300 C13—H13A 0.9700
C4—C5 1.385 (3) C13—H13B 0.9700
C13—O2—H2A 109.2 (19) O1—C8—N1 123.46 (15)
C8—N1—C9 127.05 (13) O1—C8—C6 122.79 (15)
C8—N1—H1A 116.5 N1—C8—C6 113.71 (14)
C9—N1—H1A 116.5 N2—C9—N1 113.03 (14)
C9—N2—C10 120.68 (15) N2—C9—S1 125.24 (13)
C9—N2—C12 124.08 (14) N1—C9—S1 121.59 (12)
C10—N2—C12 115.22 (14) N2—C10—C11 112.60 (16)
C2—C1—C6 121.06 (18) N2—C10—H10A 109.1
C2—C1—H1 119.5 C11—C10—H10A 109.1
C6—C1—H1 119.5 N2—C10—H10B 109.1
C3—C2—C1 119.02 (19) C11—C10—H10B 109.1
C3—C2—H2 120.5 H10A—C10—H10B 107.8
C1—C2—H2 120.5 C10—C11—H11A 109.5
C2—C3—C4 120.08 (18) C10—C11—H11B 109.5
C2—C3—H3 120.0 H11A—C11—H11B 109.5
C4—C3—H3 120.0 C10—C11—H11C 109.5
C3—C4—C5 122.36 (19) H11A—C11—H11C 109.5
C3—C4—H4 118.8 H11B—C11—H11C 109.5
C5—C4—H4 118.8 N2—C12—C13 113.24 (16)
C4—C5—C6 117.25 (18) N2—C12—H12A 108.9
C4—C5—C7 119.64 (17) C13—C12—H12A 108.9
C6—C5—C7 123.09 (16) N2—C12—H12B 108.9
C1—C6—C5 120.12 (16) C13—C12—H12B 108.9
C1—C6—C8 119.94 (15) H12A—C12—H12B 107.7
C5—C6—C8 119.94 (15) O2—C13—C12 108.07 (15)
C5—C7—H7A 109.5 O2—C13—H13A 110.1
C5—C7—H7B 109.5 C12—C13—H13A 110.1
H7A—C7—H7B 109.5 O2—C13—H13B 110.1
C5—C7—H7C 109.5 C12—C13—H13B 110.1
H7A—C7—H7C 109.5 H13A—C13—H13B 108.4
H7B—C7—H7C 109.5
C6—C1—C2—C3 2.1 (3) C5—C6—C8—O1 45.3 (2)
C1—C2—C3—C4 −2.0 (3) C1—C6—C8—N1 43.5 (2)
C2—C3—C4—C5 −0.7 (3) C5—C6—C8—N1 −136.79 (16)
C3—C4—C5—C6 3.2 (3) C10—N2—C9—N1 171.38 (14)
C3—C4—C5—C7 −178.29 (18) C12—N2—C9—N1 −10.0 (2)
C2—C1—C6—C5 0.4 (3) C10—N2—C9—S1 −4.2 (2)
C2—C1—C6—C8 −179.82 (17) C12—N2—C9—S1 174.43 (13)
C4—C5—C6—C1 −3.0 (2) C8—N1—C9—N2 137.07 (16)
C7—C5—C6—C1 178.51 (17) C8—N1—C9—S1 −47.1 (2)
C4—C5—C6—C8 177.27 (15) C9—N2—C10—C11 92.3 (2)
C7—C5—C6—C8 −1.2 (3) C12—N2—C10—C11 −86.5 (2)
C9—N1—C8—O1 −7.0 (3) C9—N2—C12—C13 92.0 (2)
C9—N1—C8—C6 175.12 (15) C10—N2—C12—C13 −89.25 (19)
C1—C6—C8—O1 −134.39 (18) N2—C12—C13—O2 −65.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2 0.86 1.98 2.750 (2) 149
O2—H2A···O1i 0.81 (2) 1.91 (2) 2.716 (2) 171 (2)

Symmetry code: (i) x, −y+1/2, z+1/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: LR2125).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Awang, N. W., Yamin, B. M. & Yusof, S. F. (2013). Z. Kristallogr. New Cryst. Struct. 228, 467–468.
  3. Bruker (2009). SADABS, SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Sapari, S., Yamin, B. M. & Hasbullah, S. A. (2013). Z. Kristallogr. New Cryst. Struct. 228, 465-466.
  5. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  6. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  7. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814008952/lr2125sup1.cif

e-70-0o602-sup1.cif (22.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008952/lr2125Isup2.hkl

e-70-0o602-Isup2.hkl (126.9KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008952/lr2125Isup3.cml

CCDC reference: 998473

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES