Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 12;70(Pt 5):o539. doi: 10.1107/S1600536814007594

{[2-Methyl-2-(phen­oxy­meth­yl)propane-1,3-di­yl]bis­(­oxy)}di­benzene

Ziad Moussa a,*, Harbi Tomah Al-Masri a, Amjed Shraim b, Mohammed Fettouhi c
PMCID: PMC4011283  PMID: 24860348

Abstract

The title compound, C23H24O3, was obtained in a one-step (60% yield) synthesis from 1,1,1-tris(hydroxymethyl)ethane. It features a tripodal ligand capable of complexing metal centres. One of the three conformations involving the methyl group, the central C—C bond and the phenoxy substituents is antiperiplanar while the two others are synclinal [the corresponding C—C—C—O torsion angles are −174.6 (1), −53.2 (2) and −47.3 (2)°]. In the crystal, C—H⋯O inter­actions link the molecules into [010] chains.

Related literature  

For details of the synthesis, see: Viguier et al. (2001); Alajarín et al. (2007); Beaufort et al. (2007). For a related structure, see: Laliberté et al. (2003).graphic file with name e-70-0o539-scheme1.jpg

Experimental  

Crystal data  

  • C23H24O3

  • M r = 348.42

  • Monoclinic, Inline graphic

  • a = 13.5755 (15) Å

  • b = 6.2829 (7) Å

  • c = 22.514 (3) Å

  • β = 91.033 (2)°

  • V = 1920.0 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.08 mm−1

  • T = 295 K

  • 0.41 × 0.32 × 0.11 mm

Data collection  

  • Bruker SMART APEX area-detector diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996) T min = 0.969, T max = 0.991

  • 16758 measured reflections

  • 4770 independent reflections

  • 2614 reflections with I > 2σ(I)

  • R int = 0.045

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.050

  • wR(F 2) = 0.124

  • S = 1.00

  • 4770 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814007594/bt6973sup1.cif

e-70-0o539-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007594/bt6973Isup2.hkl

e-70-0o539-Isup2.hkl (233.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007594/bt6973Isup3.cml

CCDC reference: 942596

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O2i 0.93 2.59 3.5081 (19) 170

Symmetry code: (i) Inline graphic.

Acknowledgments

We gratefully acknowledge King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia for use of the X-ray diffraction facility.

supplementary crystallographic information

1. Comment

α,α,α-tris(hydroxymethyl)ethane has been widely used in the design of polypodal ligands (Viguier et al., 2001; Alajarín et al., 2007; Beaufort et al., 2007) capable of forming stable complexes with transition metals [Cu(I), Cu(II), Ni(II), Pd(II), Y(III)] and a variety of lanthanide(III) cations (La3+, Sm3+, Eu3+, Gd3+, Tb3+, Dy3+). The main step in the preparation of such compounds involves nucleophilic displacement of the hydroxyl group with various nucleophiles. The hydroxyl group is initially converted to a tosylate (Beaufort et al., 2007) or a halogen (Alajarín et al., 2007) before the substitution step is carried out. The title compound provides a related tripodal ligand that can be readily synthesized in a single step and in good yield. In the course of investigating its use as a tripodal ligand in transition metal complexation reactions, we examined its structure to determine the preferred conformation, identify the principal intermolecular interactions, and extract detailed geometric information.

Initial attempts to prepare the title compound by reacting phenol or sodium phenoxide with α,α,α-tris[(4-tolylsulfonyl)methyl]ethane or α,α,α-tris(chloromethyl)ethane were unsuccessful due to the poor nucleophilic character of phenol and its alkali metal salts. However, converting α,α,α-tris(hydroxymethyl)ethane to the corresponding trifluoromethanesulfonate derivative gave a more effective substrate with a much superior leaving group ability. Thus, the latter derivative reacted with sodium phenoxide under very mild conditions to afford the title compound in 60% isolated yield.

The X-ray structure determination of the tripodal O,O,O-ligand shows the central C2-atom to be bonded to a methyl groups and three phenoxymethyl groups. The geometry around the central C-atom could be described as a slightly distorted tetrahedron because the bond angles deviate from the ideal value of 109.47°. The C(3)-C(2)-C(10) [111.04 (13)°] and C(1)-C(2)-C(17) [110.26 (13)°], and C(1)-C(2)-C(10) [111.15 (13)°] angles are wide, and the other three angles are narrow. The three phenoxymethyl arms are tilted away from the C-center due to steric interactions. One of the three conformations involving the methyl group, the central C—C bond and each one of the three phenoxy substituents is antiperiplanar while the two others are synclinal. The corresponding torsion angles are C1—C2—C3—O1: -174.6 (1)°, C1—C2—C17—O3: -53.2 (2)° and C1—C2—C10—O2: -47.3 (2)° respectively. The bond angles and bond distances are in good agreement with those reported for the only one reported analog namely 1,3-diphenoxy-2,2-bis(phenoxymethyl)propane (Laliberté et al., 2003).

The only remarkable short intermolecular contact is a C-H···O interaction.

2. Experimental

Preparation of (2-methyl-2-(phenoxymethyl)propane-1,3-diyl)bis(oxy)dibenzene

1,1,1-tris(hydroxymethyl)ethane (600 mg, 5 mmol) was dissolved in pyridine (10 ml) and cooled to 273K in an ice/water bath. The colorless solution was treated dropwise over ten minutes with trifluoromethanesulfonic anhydride (4.34 g, 2.6 ml, 15.4 mmol) to give a deep dark red homogeneous solution and stirring was continued for another 50 minutes. Simultaneously and in a separate flask, NaH (1.98 g, 60%, 50 mmol) was washed with hexanes and suspended in THF (30 ml) at 273K. Phenol (4.23 g, 45 mmol) was added in portions to the stirred suspension over 1 h. The trifluoromethanesulfonate solution was then slowly added to the sodium phenoxide solution at 273K to give a light reddish yellow color. The ice bath was removed and the mixture was subsequently stirred overnight at room temperature. The mixture was diluted with diethyl ether (50 ml) and the ether layer was washed with 5% HCl solution (3 x 20 ml), 1 N solution of NaOH (3 x 20 ml), saturated NaCl solution (3 x 20 ml), dried (Na2SO4) and concentrated in vacuo. 1H NMR analysis of the crude indicated that it consisted of a 2:1 mixture of the product and corresponding disubstituted analogue. The residue was initially chromatographed (elution with 90% hexanes-ethyl acetate) to provide an unseparated mixture of the aforementioned products. Further chromatographic separation with hexanes and re-crystallization (hexanes) afforded 1.04 g (60%) of the tripodal ligand as a colorless crystalline solid: 1H NMR (CDCl3, 400 MHz) δ 7.30–7.20 (m, 6H, Ar—H), 6.97–6.88 (m, 9H, Ar—H), 4.09 (s, 6H, OCH2), 1.33 (s, 3H, CH3); 13C NMR (CDCl3, 100 MHz) δ 159.1 (C), 129.4 (CH), 120.8 (CH), 114.6 (CH), 70.0 (CH2), 40.4 (C), 17.3 (CH3).

3. Refinement

All the H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radius.

Crystal data

C23H24O3 F(000) = 744
Mr = 348.42 Dx = 1.205 Mg m3
Monoclinic, P21/n Melting point: 340 K
Hall symbol: -P 2yn Mo Kα radiation, λ = 0.71073 Å
a = 13.5755 (15) Å Cell parameters from 16758 reflections
b = 6.2829 (7) Å θ = 1.7–28.3°
c = 22.514 (3) Å µ = 0.08 mm1
β = 91.033 (2)° T = 295 K
V = 1920.0 (4) Å3 Block, colourless
Z = 4 0.41 × 0.32 × 0.11 mm

Data collection

Bruker SMART APEX area-detector diffractometer 4770 independent reflections
Radiation source: normal-focus sealed tube 2614 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.045
ω scans θmax = 28.3°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) h = −18→18
Tmin = 0.969, Tmax = 0.991 k = −8→8
16758 measured reflections l = −26→29

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124 H-atom parameters constrained
S = 1.00 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.108P] where P = (Fo2 + 2Fc2)/3
4770 reflections (Δ/σ)max < 0.001
236 parameters Δρmax = 0.16 e Å3
0 restraints Δρmin = −0.14 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.68030 (8) 0.63321 (17) 0.10973 (5) 0.0513 (3)
O2 0.82639 (8) 0.16266 (19) 0.06970 (5) 0.0576 (3)
O3 0.68819 (9) 0.4660 (2) −0.06922 (5) 0.0603 (3)
C1 0.64308 (13) 0.1538 (3) 0.01456 (8) 0.0575 (5)
H1A 0.6750 0.1020 −0.0203 0.086*
H1B 0.5742 0.1738 0.0060 0.086*
H1C 0.6512 0.0524 0.0462 0.086*
C2 0.68907 (11) 0.3661 (2) 0.03331 (7) 0.0431 (4)
C3 0.64647 (12) 0.4268 (3) 0.09311 (7) 0.0469 (4)
H3A 0.5751 0.4260 0.0904 0.056*
H3B 0.6669 0.3239 0.1230 0.056*
C4 0.65081 (11) 0.7116 (3) 0.16385 (6) 0.0423 (4)
C5 0.69030 (11) 0.9064 (3) 0.17973 (7) 0.0470 (4)
H5 0.7327 0.9762 0.1543 0.056*
C6 0.66682 (13) 0.9972 (3) 0.23330 (7) 0.0564 (5)
H6 0.6927 1.1293 0.2437 0.068*
C7 0.60515 (14) 0.8929 (3) 0.27141 (8) 0.0643 (5)
H7 0.5905 0.9526 0.3080 0.077*
C8 0.56545 (14) 0.7011 (3) 0.25532 (8) 0.0627 (5)
H8 0.5231 0.6322 0.2810 0.075*
C9 0.58723 (12) 0.6073 (3) 0.20120 (7) 0.0524 (4)
H9 0.5596 0.4773 0.1904 0.063*
C10 0.80135 (11) 0.3501 (3) 0.03726 (7) 0.0470 (4)
H10A 0.8284 0.3432 −0.0023 0.056*
H10B 0.8284 0.4744 0.0573 0.056*
C11 0.92434 (11) 0.1140 (3) 0.07759 (7) 0.0484 (4)
C12 0.94461 (14) −0.0863 (3) 0.10011 (8) 0.0616 (5)
H12 0.8935 −0.1802 0.1079 0.074*
C13 1.04092 (15) −0.1463 (4) 0.11106 (9) 0.0717 (6)
H13 1.0545 −0.2815 0.1259 0.086*
C14 1.11664 (15) −0.0090 (4) 0.10026 (9) 0.0795 (6)
H14 1.1815 −0.0497 0.1079 0.095*
C15 1.09607 (14) 0.1878 (4) 0.07819 (10) 0.0836 (7)
H15 1.1475 0.2814 0.0710 0.100*
C16 1.00011 (13) 0.2518 (3) 0.06624 (8) 0.0655 (5)
H16 0.9872 0.3863 0.0507 0.079*
C17 0.66205 (12) 0.5391 (3) −0.01163 (7) 0.0498 (4)
H17A 0.5919 0.5682 −0.0106 0.060*
H17B 0.6973 0.6693 −0.0021 0.060*
C18 0.66232 (11) 0.5878 (3) −0.11761 (7) 0.0494 (4)
C19 0.68929 (13) 0.5068 (3) −0.17178 (8) 0.0652 (5)
H19 0.7227 0.3778 −0.1737 0.078*
C20 0.66669 (15) 0.6174 (4) −0.22296 (9) 0.0786 (6)
H20 0.6847 0.5621 −0.2595 0.094*
C21 0.61777 (15) 0.8086 (4) −0.22066 (9) 0.0769 (6)
H21 0.6030 0.8831 −0.2554 0.092*
C22 0.59107 (13) 0.8883 (3) −0.16677 (9) 0.0664 (5)
H22 0.5577 1.0174 −0.1651 0.080*
C23 0.61290 (12) 0.7797 (3) −0.11474 (8) 0.0543 (5)
H23 0.5946 0.8352 −0.0783 0.065*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0664 (7) 0.0418 (7) 0.0462 (6) −0.0108 (6) 0.0132 (5) −0.0045 (5)
O2 0.0462 (6) 0.0552 (8) 0.0716 (8) 0.0021 (5) 0.0038 (5) 0.0187 (6)
O3 0.0792 (8) 0.0587 (8) 0.0431 (6) 0.0172 (6) 0.0000 (6) −0.0039 (6)
C1 0.0607 (10) 0.0499 (11) 0.0618 (11) −0.0042 (9) −0.0006 (8) −0.0106 (9)
C2 0.0465 (9) 0.0377 (9) 0.0450 (9) 0.0000 (7) 0.0016 (7) −0.0034 (7)
C3 0.0514 (9) 0.0395 (10) 0.0500 (10) −0.0053 (7) 0.0047 (7) −0.0030 (7)
C4 0.0476 (9) 0.0421 (10) 0.0371 (8) 0.0025 (7) 0.0002 (7) 0.0013 (7)
C5 0.0520 (9) 0.0431 (10) 0.0459 (9) −0.0017 (8) 0.0006 (7) 0.0026 (8)
C6 0.0676 (11) 0.0482 (11) 0.0531 (10) 0.0021 (9) −0.0083 (9) −0.0066 (9)
C7 0.0793 (13) 0.0702 (14) 0.0435 (10) 0.0072 (11) 0.0027 (9) −0.0106 (10)
C8 0.0680 (11) 0.0719 (15) 0.0488 (10) −0.0004 (10) 0.0141 (9) 0.0055 (10)
C9 0.0585 (10) 0.0504 (11) 0.0484 (10) −0.0070 (8) 0.0057 (8) 0.0010 (8)
C10 0.0512 (9) 0.0416 (10) 0.0483 (9) 0.0002 (7) 0.0034 (7) 0.0037 (8)
C11 0.0469 (9) 0.0559 (12) 0.0425 (9) 0.0015 (8) 0.0022 (7) 0.0006 (8)
C12 0.0627 (11) 0.0554 (12) 0.0666 (12) 0.0047 (9) −0.0001 (9) 0.0038 (10)
C13 0.0754 (14) 0.0700 (15) 0.0696 (13) 0.0224 (12) −0.0040 (10) 0.0024 (11)
C14 0.0534 (12) 0.110 (2) 0.0745 (14) 0.0163 (12) −0.0008 (10) 0.0097 (14)
C15 0.0505 (12) 0.108 (2) 0.0927 (16) −0.0062 (12) 0.0015 (10) 0.0268 (14)
C16 0.0534 (11) 0.0731 (14) 0.0701 (12) −0.0013 (10) 0.0019 (9) 0.0184 (11)
C17 0.0528 (9) 0.0512 (11) 0.0453 (9) 0.0064 (8) 0.0006 (7) −0.0051 (8)
C18 0.0448 (9) 0.0575 (12) 0.0456 (9) −0.0024 (8) −0.0038 (7) 0.0010 (8)
C19 0.0677 (12) 0.0767 (15) 0.0513 (11) 0.0111 (10) 0.0068 (9) −0.0016 (10)
C20 0.0789 (14) 0.109 (2) 0.0487 (11) 0.0070 (13) 0.0101 (10) 0.0062 (12)
C21 0.0679 (13) 0.1007 (19) 0.0622 (13) 0.0049 (12) 0.0022 (10) 0.0246 (12)
C22 0.0604 (11) 0.0630 (13) 0.0757 (14) 0.0007 (10) −0.0049 (10) 0.0130 (11)
C23 0.0544 (10) 0.0543 (12) 0.0539 (10) −0.0033 (9) −0.0044 (8) −0.0009 (9)

Geometric parameters (Å, º)

O1—C4 1.3804 (17) C10—H10A 0.9700
O1—C3 1.4238 (18) C10—H10B 0.9700
O2—C11 1.3729 (19) C11—C16 1.372 (2)
O2—C10 1.4240 (18) C11—C12 1.382 (2)
O3—C18 1.3718 (19) C12—C13 1.379 (3)
O3—C17 1.4263 (18) C12—H12 0.9300
C1—C2 1.529 (2) C13—C14 1.368 (3)
C1—H1A 0.9600 C13—H13 0.9300
C1—H1B 0.9600 C14—C15 1.359 (3)
C1—H1C 0.9600 C14—H14 0.9300
C2—C3 1.523 (2) C15—C16 1.385 (3)
C2—C17 1.525 (2) C15—H15 0.9300
C2—C10 1.529 (2) C16—H16 0.9300
C3—H3A 0.9700 C17—H17A 0.9700
C3—H3B 0.9700 C17—H17B 0.9700
C4—C5 1.380 (2) C18—C19 1.377 (2)
C4—C9 1.381 (2) C18—C23 1.382 (2)
C5—C6 1.377 (2) C19—C20 1.375 (3)
C5—H5 0.9300 C19—H19 0.9300
C6—C7 1.376 (2) C20—C21 1.374 (3)
C6—H6 0.9300 C20—H20 0.9300
C7—C8 1.366 (3) C21—C22 1.367 (3)
C7—H7 0.9300 C21—H21 0.9300
C8—C9 1.390 (2) C22—C23 1.383 (2)
C8—H8 0.9300 C22—H22 0.9300
C9—H9 0.9300 C23—H23 0.9300
C4—O1—C3 117.37 (11) H10A—C10—H10B 108.4
C11—O2—C10 118.19 (12) C16—C11—O2 124.26 (16)
C18—O3—C17 118.56 (13) C16—C11—C12 119.85 (16)
C2—C1—H1A 109.5 O2—C11—C12 115.86 (15)
C2—C1—H1B 109.5 C13—C12—C11 119.77 (18)
H1A—C1—H1B 109.5 C13—C12—H12 120.1
C2—C1—H1C 109.5 C11—C12—H12 120.1
H1A—C1—H1C 109.5 C14—C13—C12 120.6 (2)
H1B—C1—H1C 109.5 C14—C13—H13 119.7
C3—C2—C17 108.50 (13) C12—C13—H13 119.7
C3—C2—C1 107.62 (13) C15—C14—C13 119.26 (19)
C17—C2—C1 110.26 (13) C15—C14—H14 120.4
C3—C2—C10 111.04 (13) C13—C14—H14 120.4
C17—C2—C10 108.24 (12) C14—C15—C16 121.4 (2)
C1—C2—C10 111.15 (13) C14—C15—H15 119.3
O1—C3—C2 109.54 (12) C16—C15—H15 119.3
O1—C3—H3A 109.8 C11—C16—C15 119.08 (19)
C2—C3—H3A 109.8 C11—C16—H16 120.5
O1—C3—H3B 109.8 C15—C16—H16 120.5
C2—C3—H3B 109.8 O3—C17—C2 108.23 (13)
H3A—C3—H3B 108.2 O3—C17—H17A 110.1
O1—C4—C5 115.30 (13) C2—C17—H17A 110.1
O1—C4—C9 124.24 (15) O3—C17—H17B 110.1
C5—C4—C9 120.46 (14) C2—C17—H17B 110.1
C6—C5—C4 119.95 (15) H17A—C17—H17B 108.4
C6—C5—H5 120.0 O3—C18—C19 115.40 (16)
C4—C5—H5 120.0 O3—C18—C23 124.55 (15)
C7—C6—C5 120.12 (17) C19—C18—C23 120.05 (16)
C7—C6—H6 119.9 C20—C19—C18 119.78 (19)
C5—C6—H6 119.9 C20—C19—H19 120.1
C8—C7—C6 119.77 (16) C18—C19—H19 120.1
C8—C7—H7 120.1 C21—C20—C19 120.70 (19)
C6—C7—H7 120.1 C21—C20—H20 119.7
C7—C8—C9 121.14 (17) C19—C20—H20 119.7
C7—C8—H8 119.4 C22—C21—C20 119.31 (19)
C9—C8—H8 119.4 C22—C21—H21 120.3
C4—C9—C8 118.54 (17) C20—C21—H21 120.3
C4—C9—H9 120.7 C21—C22—C23 121.0 (2)
C8—C9—H9 120.7 C21—C22—H22 119.5
O2—C10—C2 108.21 (12) C23—C22—H22 119.5
O2—C10—H10A 110.1 C18—C23—C22 119.18 (18)
C2—C10—H10A 110.1 C18—C23—H23 120.4
O2—C10—H10B 110.1 C22—C23—H23 120.4
C2—C10—H10B 110.1

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O2i 0.93 2.59 3.5081 (19) 170

Symmetry code: (i) x, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6973).

References

  1. Alajarín, M., López-Leonardo, C., Berná, J. & Steed, J. W. (2007). Tetrahedron, 63, 2078–2083.
  2. Beaufort, L., Delaude, L. & Noels, A. F. (2007). Tetrahedron, 63, 7003–7008.
  3. Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  5. Laliberté, D., Maris, T. & Wuest, J. D. (2003). Acta Cryst. E59, o799–o801.
  6. Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  7. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  8. Viguier, R., Serratrice, G., Dupraz, A. & Dupuy, C. (2001). Eur. J. Inorg. Chem. pp. 1789–1795.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814007594/bt6973sup1.cif

e-70-0o539-sup1.cif (18.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007594/bt6973Isup2.hkl

e-70-0o539-Isup2.hkl (233.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007594/bt6973Isup3.cml

CCDC reference: 942596

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES