Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 16;70(Pt 5):o563–o564. doi: 10.1107/S1600536814007934

1-(2,3,4,5,6-Penta­methyl­benz­yl)-2-(pyridin-2-yl)-1H-benzimidazole

Fırat Anĝay a, Ömer Çelik b,c,*, Orhan Barlık d, Mahmut Ulusoy d
PMCID: PMC4011285  PMID: 24860369

Abstract

In the title compound, C24H25N3, the benzimidazole ring system is essentially planar, with an r.m.s. deviation of 0.017 Å, and forms dihedral angles of 7.81 (5) and 87.61 (4)° with the pyridine and benzene rings, respectively. An intra­molecular C—H⋯N hydrogen bond is observed. In the crystal, mol­ecules are stacked along the a axis by weak C—H⋯π inter­actions.

Related literature  

For the use of 2-(2-pyrid­yl)benzimidazole in coordination chemistry, see: Sahin et al. (2010); Harkins et al. (1956); Chiswell et al. (1964); De Castro et al. (1991); Maekawa et al. (1994); Khalil et al. (2001); Boca et al. (1997). For the use of N—N-type ligand systems involving 2,2′-bi­pyridine, see: Lippert (1999); Wong & Giandomenico (1999), Kelland & Farrell (2000). For related structures, see: Çelik et al. (2007, 2009, 2014).graphic file with name e-70-0o563-scheme1.jpg

Experimental  

Crystal data  

  • C24H25N3

  • M r = 355.47

  • Monoclinic, Inline graphic

  • a = 5.3470 (3) Å

  • b = 21.0622 (12) Å

  • c = 17.0379 (9) Å

  • β = 97.699 (3)°

  • V = 1901.50 (18) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.25 × 0.20 × 0.15 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (Blessing, 1995) T min = 0.982, T max = 0.989

  • 25354 measured reflections

  • 3741 independent reflections

  • 3056 reflections with I > 2σ(I)

  • R int = 0.026

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.150

  • S = 1.04

  • 3741 reflections

  • 254 parameters

  • H-atom parameters constrained

  • Δρmax = 0.24 e Å−3

  • Δρmin = −0.17 e Å−3

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814007934/rz5115sup1.cif

e-70-0o563-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007934/rz5115Isup2.hkl

e-70-0o563-Isup2.hkl (179.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007934/rz5115Isup3.cml

CCDC reference: 996309

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C7–C12 benzene ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C13—H13ACg i 0.97 2.91 3.6941 (18) 139
C13—H13B⋯N1 0.97 2.30 3.029 (2) 131

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors are indebted to the X-ray laboratory of Dicle University Science and the Technology Application and Research Center, Diyarbakir, Turkey, for use of the X-ray diffractometer.

supplementary crystallographic information

1. Comment

The N—N type ligand system 2-(2-pyridyl)benzimidazole has a venerable history in coordination chemistry (Sahin et al., 2010; Harkins et al., 1956; Chiswell et al., 1964; De Castro et al., 1991; Maekawa et al., 1994; Khalil et al., 2001; Boca et al., 1997). Lots of platinum chemistry bearing N—N type ligand systems involving 2,2'-bipyridine has been reported aimed at the design of drugs having less serious side-effects than those of cisplatin, or which could extend the scope of Pt based chemotherapy to tumours (Lippert, 1999; Wong & Giandomenico, 1999; Kelland & Farrell, 2000).

The molecular structure of the title compound is shown in Fig. 1. Bond lengths and angles are in good agreement with those reported for related structures (Çelik et al., 2007; Çelik et al., 2009; Çelik et al., 2014). The benzimidazole ring system is substantially planar, the maximum deviation being 0.027 (2) Å for atom C8, and forms dihedral angles of 7.81 (5) and 87.61 (4)° with the mean planes through the pyridine (N1/C1–C5) and phenyl (C14–C19) rings, respectively. An intramolecular C—H···N hydrogen bond is present (Table 1). In the crystal structure (Fig. 2), molecules are stacked along the a axis by weak C—H···π hydrogen interactions (Table 1) involving the C7—C12 benzene ring of the benzimidazole moiety.

2. Experimental

NaH (60%) (398 mg, 11.0 mmol) was washed two times with dry hexane, filtered off via cannula and a solution of the 2-pyridiylbenzimidazole (1.95 g, 10.0 mmol) in dry toluene (10 ml) was added, then the solution was heated at 90°C for 24 h. Evolution of hydrogen was observed at this temperature. 2,3,4,5,6-Pentamethylbenzyl bromide (2.45 g, 10.0 mmol) was added to this mixture at room temperature and then heated again at 90°C for 1 day. Then volatiles were evaporated in vacuum to dryness. The residue was dissolved in CH2Cl2 and filtered via cannula on celite. The desired product was obtained after concentration of CH2Cl2 (15 ml) and then precipitated with hexane (30 ml). The off-white solid obtained in 86% yield. M. p. 416–418 K. 1H NMR (400 MHz, CDCl3, δ p.p.m.): 1.26 (s, 6H, o-(CH3)2); 1.36(s, 6H, m-(CH3)2); 2.13–2.20 (s, 3H, p-CH3); 5.50 (s, 2H, N—CH2); 6.86 (s, 1H, Ar—CH); 7.11 (s, 1H, Ar—CH); 7.26 (s, 1H, Ar—CH); 7.35 (s, 1H, Ar—CH); 7.49 (s, 1H, Ar—CH); 8.46 (s, 1H, Ar—CH); 10.19 (s, 2H, Ar—CH). 13C NMR (100.56 MHz, CDCl3, δ p.p.m.): 17.0; 17.4; 29.6; 31.7; 34.4; 35.2; 48.7; 49.3; 56.2; 117.9; 121.2; 122.4; 125.5; 126.5; 133.8; 134.0; 137.5; 140.7; 158.0; 167.9.

3. Refinement

All H atoms were placed geometrically and refined using a riding model approximation, with C—H = 0.93–0.97 Å, and with Uiso(H) = 1.2 Ueq(C) or 1.5 Ueq(C) for methyl H atoms. A rotating group model was applied to the methyl groups.

Figures

Fig. 1.

Fig. 1.

ORTEP-3 of the title compound, showing displacement ellipsoids drawn at 50% probability level.

Fig. 2.

Fig. 2.

The stacking of the title compound along the a axis with C—H···π type hydrogen-bond interactions (dashed lines). Displacement ellipsoids are drawn at the 50% probability level.

Crystal data

C24H25N3 F(000) = 760
Mr = 355.47 Dx = 1.242 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 5.3470 (3) Å Cell parameters from 1276 reflections
b = 21.0622 (12) Å θ = 2.3–31.5°
c = 17.0379 (9) Å µ = 0.07 mm1
β = 97.699 (3)° T = 296 K
V = 1901.50 (18) Å3 Prism, yellow
Z = 4 0.25 × 0.20 × 0.15 mm

Data collection

Bruker APEXII CCD diffractometer 3056 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.026
φ and ω scans θmax = 26.0°, θmin = 2.3°
Absorption correction: multi-scan (Blessing, 1995) h = −6→6
Tmin = 0.982, Tmax = 0.989 k = −25→25
25354 measured reflections l = −21→20
3741 independent reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0775P)2 + 0.5927P] where P = (Fo2 + 2Fc2)/3
3741 reflections (Δ/σ)max < 0.001
254 parameters Δρmax = 0.24 e Å3
0 restraints Δρmin = −0.17 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 1.0873 (5) 0.86580 (11) 0.44231 (14) 0.0724 (6)
H1 1.2174 0.8428 0.4246 0.087*
C2 1.0060 (5) 0.91952 (12) 0.40152 (14) 0.0737 (6)
H2 1.0790 0.9327 0.3577 0.088*
C3 0.8151 (5) 0.95308 (12) 0.42706 (16) 0.0842 (7)
H3 0.7548 0.9900 0.4011 0.101*
C4 0.7133 (5) 0.93151 (10) 0.49165 (15) 0.0771 (7)
H4 0.5809 0.9535 0.5094 0.092*
C5 0.8068 (3) 0.87716 (7) 0.53054 (11) 0.0465 (4)
C6 0.6926 (3) 0.85653 (7) 0.60059 (10) 0.0452 (4)
C7 0.4595 (4) 0.86110 (8) 0.69313 (11) 0.0507 (4)
C8 0.2891 (4) 0.87790 (10) 0.74483 (13) 0.0658 (6)
H8 0.2014 0.9161 0.7387 0.079*
C9 0.2541 (4) 0.83708 (10) 0.80460 (13) 0.0667 (6)
H9 0.1414 0.8477 0.8396 0.080*
C10 0.3850 (4) 0.77962 (10) 0.81392 (12) 0.0598 (5)
H10 0.3597 0.7531 0.8558 0.072*
C11 0.5507 (4) 0.76104 (9) 0.76284 (10) 0.0505 (4)
H11 0.6360 0.7225 0.7690 0.061*
C12 0.5841 (3) 0.80251 (8) 0.70185 (10) 0.0432 (4)
C13 0.8894 (3) 0.74472 (7) 0.62583 (10) 0.0422 (4)
H13A 1.0264 0.7410 0.6691 0.051*
H13B 0.9632 0.7525 0.5777 0.051*
C14 0.7459 (3) 0.68215 (7) 0.61734 (9) 0.0370 (4)
C15 0.5434 (3) 0.67529 (7) 0.55618 (9) 0.0391 (4)
C16 0.4047 (3) 0.61901 (8) 0.54888 (10) 0.0452 (4)
C17 0.4753 (3) 0.56796 (8) 0.59946 (11) 0.0471 (4)
C18 0.6838 (3) 0.57318 (7) 0.65801 (10) 0.0448 (4)
C19 0.8190 (3) 0.63066 (7) 0.66771 (10) 0.0412 (4)
C20 0.4783 (4) 0.72858 (9) 0.49769 (10) 0.0511 (4)
H20A 0.406 (3) 0.7111 (2) 0.4472 (7) 0.077*
H20B 0.630 (2) 0.7521 (5) 0.4912 (6) 0.077*
H20C 0.357 (2) 0.7567 (5) 0.5172 (5) 0.077*
C21 0.1762 (4) 0.61342 (11) 0.48609 (14) 0.0703 (6)
H21A 0.2254 (10) 0.5965 (8) 0.4399 (8) 0.105*
H21B 0.106 (2) 0.6535 (6) 0.4754 (8) 0.105*
H21C 0.057 (2) 0.5868 (8) 0.5043 (5) 0.105*
C22 0.3235 (5) 0.50692 (10) 0.59025 (15) 0.0710 (6)
H22A 0.314 (3) 0.4923 (5) 0.5373 (9) 0.107*
H22B 0.158 (3) 0.5146 (2) 0.6025 (10) 0.107*
H22C 0.403 (2) 0.4757 (5) 0.6251 (9) 0.107*
C23 0.7616 (5) 0.51661 (9) 0.71064 (13) 0.0655 (6)
H23A 0.626 (2) 0.5047 (5) 0.7383 (8) 0.098*
H23B 0.904 (3) 0.5276 (3) 0.7476 (8) 0.098*
H23C 0.803 (3) 0.4820 (6) 0.6790 (5) 0.098*
C24 1.0435 (4) 0.63574 (10) 0.73176 (13) 0.0630 (5)
H24A 1.168 (2) 0.6592 (7) 0.7134 (4) 0.094*
H24B 1.104 (2) 0.5960 (6) 0.7452 (7) 0.094*
H24C 0.9950 (10) 0.6551 (7) 0.7754 (7) 0.094*
N1 0.9926 (3) 0.84413 (8) 0.50574 (10) 0.0616 (4)
N2 0.5315 (3) 0.89400 (7) 0.63031 (10) 0.0561 (4)
N3 0.7309 (3) 0.79969 (6) 0.64092 (8) 0.0406 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0797 (15) 0.0651 (13) 0.0780 (14) 0.0052 (11) 0.0312 (12) 0.0205 (11)
C2 0.0844 (16) 0.0737 (14) 0.0641 (13) −0.0104 (12) 0.0138 (12) 0.0232 (11)
C3 0.1041 (19) 0.0620 (14) 0.0871 (17) 0.0111 (13) 0.0152 (15) 0.0351 (13)
C4 0.0940 (17) 0.0516 (12) 0.0889 (16) 0.0184 (11) 0.0244 (14) 0.0216 (11)
C5 0.0539 (10) 0.0329 (8) 0.0517 (10) −0.0066 (7) 0.0031 (8) 0.0006 (7)
C6 0.0522 (10) 0.0305 (8) 0.0519 (10) −0.0019 (7) 0.0034 (8) −0.0032 (7)
C7 0.0580 (11) 0.0396 (9) 0.0551 (10) −0.0025 (8) 0.0099 (9) −0.0119 (8)
C8 0.0756 (14) 0.0522 (11) 0.0726 (13) 0.0050 (10) 0.0212 (11) −0.0188 (10)
C9 0.0737 (14) 0.0657 (13) 0.0651 (13) −0.0053 (11) 0.0261 (11) −0.0210 (11)
C10 0.0732 (13) 0.0590 (11) 0.0490 (10) −0.0122 (10) 0.0152 (9) −0.0084 (9)
C11 0.0582 (11) 0.0457 (9) 0.0476 (10) −0.0050 (8) 0.0070 (8) −0.0042 (7)
C12 0.0451 (9) 0.0397 (8) 0.0442 (9) −0.0072 (7) 0.0038 (7) −0.0087 (7)
C13 0.0405 (9) 0.0345 (8) 0.0514 (9) 0.0012 (6) 0.0059 (7) 0.0014 (7)
C14 0.0395 (8) 0.0319 (7) 0.0407 (8) 0.0008 (6) 0.0096 (6) −0.0031 (6)
C15 0.0416 (8) 0.0382 (8) 0.0389 (8) 0.0030 (6) 0.0108 (7) −0.0045 (6)
C16 0.0441 (9) 0.0449 (9) 0.0479 (9) −0.0036 (7) 0.0108 (7) −0.0122 (7)
C17 0.0536 (10) 0.0381 (9) 0.0538 (10) −0.0077 (7) 0.0227 (8) −0.0116 (7)
C18 0.0574 (10) 0.0339 (8) 0.0473 (9) 0.0041 (7) 0.0230 (8) −0.0003 (7)
C19 0.0453 (9) 0.0367 (8) 0.0426 (8) 0.0044 (7) 0.0094 (7) 0.0000 (6)
C20 0.0573 (11) 0.0504 (10) 0.0441 (9) 0.0048 (8) 0.0010 (8) 0.0003 (8)
C21 0.0589 (12) 0.0747 (14) 0.0738 (14) −0.0118 (11) −0.0033 (11) −0.0163 (11)
C22 0.0808 (15) 0.0505 (11) 0.0862 (15) −0.0231 (10) 0.0274 (12) −0.0111 (10)
C23 0.0940 (16) 0.0398 (10) 0.0665 (13) 0.0052 (10) 0.0247 (11) 0.0093 (9)
C24 0.0675 (13) 0.0540 (11) 0.0624 (12) 0.0037 (9) −0.0094 (10) 0.0093 (9)
N1 0.0691 (10) 0.0521 (9) 0.0671 (10) 0.0057 (8) 0.0216 (8) 0.0180 (8)
N2 0.0697 (10) 0.0346 (7) 0.0650 (10) 0.0040 (7) 0.0129 (8) −0.0039 (7)
N3 0.0456 (7) 0.0305 (6) 0.0455 (7) −0.0029 (5) 0.0056 (6) −0.0021 (5)

Geometric parameters (Å, º)

C1—N1 1.334 (3) C13—H13B 0.9700
C1—C2 1.368 (3) C14—C19 1.405 (2)
C1—H1 0.9300 C14—C15 1.406 (2)
C2—C3 1.360 (4) C15—C16 1.395 (2)
C2—H2 0.9300 C15—C20 1.510 (2)
C3—C4 1.369 (3) C16—C17 1.398 (3)
C3—H3 0.9300 C16—C21 1.517 (3)
C4—C5 1.382 (3) C17—C18 1.397 (3)
C4—H4 0.9300 C17—C22 1.517 (2)
C5—N1 1.328 (2) C18—C19 1.408 (2)
C5—C6 1.477 (3) C18—C23 1.515 (2)
C6—N2 1.319 (2) C19—C24 1.514 (3)
C6—N3 1.382 (2) C20—H20A 0.968 (12)
C7—N2 1.373 (2) C20—H20B 0.968 (13)
C7—C8 1.395 (3) C20—H20C 0.968 (12)
C7—C12 1.401 (2) C21—H21A 0.933 (14)
C8—C9 1.365 (3) C21—H21B 0.933 (14)
C8—H8 0.9300 C21—H21C 0.933 (14)
C9—C10 1.396 (3) C22—H22A 0.948 (14)
C9—H9 0.9300 C22—H22B 0.948 (14)
C10—C11 1.379 (3) C22—H22C 0.948 (14)
C10—H10 0.9300 C23—H23A 0.951 (14)
C11—C12 1.387 (2) C23—H23B 0.951 (14)
C11—H11 0.9300 C23—H23C 0.951 (13)
C12—N3 1.384 (2) C24—H24A 0.915 (14)
C13—N3 1.478 (2) C24—H24B 0.915 (13)
C13—C14 1.522 (2) C24—H24C 0.915 (13)
C13—H13A 0.9700
N1—C1—C2 124.4 (2) C15—C16—C17 120.14 (16)
N1—C1—H1 117.8 C15—C16—C21 119.82 (17)
C2—C1—H1 117.8 C17—C16—C21 120.05 (16)
C3—C2—C1 117.9 (2) C18—C17—C16 120.23 (15)
C3—C2—H2 121.0 C18—C17—C22 120.34 (17)
C1—C2—H2 121.0 C16—C17—C22 119.42 (18)
C2—C3—C4 118.7 (2) C17—C18—C19 119.95 (15)
C2—C3—H3 120.6 C17—C18—C23 119.35 (16)
C4—C3—H3 120.6 C19—C18—C23 120.69 (17)
C3—C4—C5 120.2 (2) C14—C19—C18 119.69 (15)
C3—C4—H4 119.9 C14—C19—C24 120.95 (15)
C5—C4—H4 119.9 C18—C19—C24 119.35 (15)
N1—C5—C4 121.30 (19) C15—C20—H20A 109.5
N1—C5—C6 120.74 (15) C15—C20—H20B 109.5
C4—C5—C6 117.96 (18) H20A—C20—H20B 109.5
N2—C6—N3 112.86 (16) C15—C20—H20C 109.5
N2—C6—C5 119.77 (15) H20A—C20—H20C 109.5
N3—C6—C5 127.37 (15) H20B—C20—H20C 109.5
N2—C7—C8 129.74 (18) C16—C21—H21A 109.5
N2—C7—C12 110.39 (16) C16—C21—H21B 109.5
C8—C7—C12 119.87 (18) H21A—C21—H21B 109.5
C9—C8—C7 118.6 (2) C16—C21—H21C 109.5
C9—C8—H8 120.7 H21A—C21—H21C 109.5
C7—C8—H8 120.7 H21B—C21—H21C 109.5
C8—C9—C10 120.93 (19) C17—C22—H22A 109.5
C8—C9—H9 119.5 C17—C22—H22B 109.5
C10—C9—H9 119.5 H22A—C22—H22B 109.5
C11—C10—C9 121.92 (19) C17—C22—H22C 109.5
C11—C10—H10 119.0 H22A—C22—H22C 109.5
C9—C10—H10 119.0 H22B—C22—H22C 109.5
C10—C11—C12 116.88 (18) C18—C23—H23A 109.5
C10—C11—H11 121.6 C18—C23—H23B 109.5
C12—C11—H11 121.6 H23A—C23—H23B 109.5
N3—C12—C11 132.66 (16) C18—C23—H23C 109.5
N3—C12—C7 105.53 (15) H23A—C23—H23C 109.5
C11—C12—C7 121.80 (17) H23B—C23—H23C 109.5
N3—C13—C14 113.67 (13) C19—C24—H24A 109.5
N3—C13—H13A 108.8 C19—C24—H24B 109.5
C14—C13—H13A 108.8 H24A—C24—H24B 109.5
N3—C13—H13B 108.8 C19—C24—H24C 109.5
C14—C13—H13B 108.8 H24A—C24—H24C 109.5
H13A—C13—H13B 107.7 H24B—C24—H24C 109.5
C19—C14—C15 119.78 (14) C5—N1—C1 117.39 (17)
C19—C14—C13 120.99 (14) C6—N2—C7 105.26 (15)
C15—C14—C13 119.19 (14) C6—N3—C12 105.94 (13)
C16—C15—C14 120.06 (15) C6—N3—C13 129.98 (14)
C16—C15—C20 119.99 (15) C12—N3—C13 124.08 (13)
C14—C15—C20 119.95 (14)
N1—C1—C2—C3 −0.2 (4) C15—C16—C17—C22 −179.52 (16)
C1—C2—C3—C4 −0.3 (4) C21—C16—C17—C22 0.7 (3)
C2—C3—C4—C5 1.0 (4) C16—C17—C18—C19 1.9 (2)
C3—C4—C5—N1 −1.2 (4) C22—C17—C18—C19 −178.06 (16)
C3—C4—C5—C6 179.1 (2) C16—C17—C18—C23 −178.23 (16)
N1—C5—C6—N2 171.36 (17) C22—C17—C18—C23 1.8 (2)
C4—C5—C6—N2 −9.0 (3) C15—C14—C19—C18 −1.9 (2)
N1—C5—C6—N3 −9.7 (3) C13—C14—C19—C18 −179.49 (14)
C4—C5—C6—N3 169.96 (19) C15—C14—C19—C24 177.28 (16)
N2—C7—C8—C9 −178.4 (2) C13—C14—C19—C24 −0.3 (2)
C12—C7—C8—C9 1.9 (3) C17—C18—C19—C14 −1.2 (2)
C7—C8—C9—C10 −0.1 (3) C23—C18—C19—C14 178.93 (15)
C8—C9—C10—C11 −1.2 (3) C17—C18—C19—C24 179.62 (16)
C9—C10—C11—C12 0.7 (3) C23—C18—C19—C24 −0.3 (2)
C10—C11—C12—N3 −179.82 (17) C4—C5—N1—C1 0.7 (3)
C10—C11—C12—C7 1.1 (3) C6—C5—N1—C1 −179.67 (18)
N2—C7—C12—N3 −1.48 (19) C2—C1—N1—C5 0.1 (4)
C8—C7—C12—N3 178.23 (17) N3—C6—N2—C7 0.2 (2)
N2—C7—C12—C11 177.79 (16) C5—C6—N2—C7 179.26 (15)
C8—C7—C12—C11 −2.5 (3) C8—C7—N2—C6 −178.8 (2)
N3—C13—C14—C19 −121.53 (16) C12—C7—N2—C6 0.8 (2)
N3—C13—C14—C15 60.88 (19) N2—C6—N3—C12 −1.10 (19)
C19—C14—C15—C16 4.3 (2) C5—C6—N3—C12 179.91 (16)
C13—C14—C15—C16 −178.05 (14) N2—C6—N3—C13 178.34 (15)
C19—C14—C15—C20 −174.84 (15) C5—C6—N3—C13 −0.7 (3)
C13—C14—C15—C20 2.8 (2) C11—C12—N3—C6 −177.65 (18)
C14—C15—C16—C17 −3.6 (2) C7—C12—N3—C6 1.50 (17)
C20—C15—C16—C17 175.52 (15) C11—C12—N3—C13 2.9 (3)
C14—C15—C16—C21 176.10 (16) C7—C12—N3—C13 −177.98 (14)
C20—C15—C16—C21 −4.7 (2) C14—C13—N3—C6 −125.33 (17)
C15—C16—C17—C18 0.5 (2) C14—C13—N3—C12 54.0 (2)
C21—C16—C17—C18 −179.21 (16)

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C7–C12 benzene ring.

D—H···A D—H H···A D···A D—H···A
C13—H13A···Cgi 0.97 2.91 3.6941 (18) 139
C13—H13B···N1 0.97 2.30 3.029 (2) 131

Symmetry code: (i) x−1, y, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5115).

References

  1. Blessing, R. H. (1995). Acta Cryst. A51, 33–38. [DOI] [PubMed]
  2. Boca, R., Baran, P., Dlhán, L., Sima, J., Wiesinger, G., Renz, F., El-Ayaan, U. & Linert, W. (1997). Polyhedron, 16, 47–55.
  3. Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Çelik, Ö., Anĝay, F., Gündoĝan, M. & Ulusoy, M. (2014). Acta Cryst. E70, o485. [DOI] [PMC free article] [PubMed]
  5. Çelik, Ö., Kasumov, V. T. & Şahin, E. (2009). Acta Cryst. E65, o2786. [DOI] [PMC free article] [PubMed]
  6. Çelik, Ö., Ulusoy, M., Taş, E. & Íde, S. (2007). Anal. Sci. 23, 185–186.
  7. Chiswell, B., Lions, F. & Morris, B. S. (1964). Inorg. Chem. 3, 110–114.
  8. De Castro, B., Freire, C., Domingues, D. & Gomes, J. (1991). Polyhedron, 10, 2541–2549.
  9. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  10. Harkins, T. R., Walter, J. L., Harris, O. E. & Freiser, H. (1956). J. Am. Chem. Soc. 78, 260–264.
  11. Kelland, L. R. & Farrell, N. (2000). In Platinum-based Drugs in Cancer Chemotherapy Tatowa: Humana Press.
  12. Khalil, M. M. H., Ali, S. A. & Ramadan, R. M. (2001). Spectrochim. Acta Part A, 57, 1017–1024. [DOI] [PubMed]
  13. Lippert, B. (1999). In Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug Weinheim: Wiley–VCH.
  14. Maekawa, M., Munakata, M., Kuroda-Sowa, T. & Hachiya, K. (1994). Inorg. Chim. Acta, 227, 137–143.
  15. Sahin, C., Ulusoy, M., Zafer, C., Ozsoy, C., Varlikli, C., Dittrich, T., Cetinkaya, B. & Icli, S. (2010). Dyes Pigments, 84, 88–94.
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Wong, E. & Giandomenico, C. M. (1999). Chem. Rev. 99, 2451–2466. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814007934/rz5115sup1.cif

e-70-0o563-sup1.cif (1MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007934/rz5115Isup2.hkl

e-70-0o563-Isup2.hkl (179.7KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007934/rz5115Isup3.cml

CCDC reference: 996309

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES