Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 26;70(Pt 5):o589–o590. doi: 10.1107/S1600536814008356

(1E,4E)-1,5-Bis[4-(di­ethyl­amino)­phen­yl]penta-1,4-dien-3-one

Pumsak Ruanwas a, Suchada Chantrapromma b,*,, Hazem A Ghabbour c, Hoong-Kun Fun c,d,§
PMCID: PMC4011286  PMID: 24860388

Abstract

There are two crystallograpically independent mol­ecules in the asymmetric unit of the title bis­chalcone derivative, C25H32N2O. Both mol­ecules are twisted with a dihedral angle between the two substituted benzene rings of 11.19 (16)° in one mol­ecule and 14.40 (15)° in the other. The central penta-1,4-dien-3-one fragments make dihedral angles of 8.49 (17) and 4.26 (17)° with the two adjacent benzene rings in one mol­ecule, whereas the corresponding values are 8.42 (16) and 6.18 (16)° in the other. In the crystal, mol­ecules are arranged into chains along the c-axis direction. Adjacent chains are inter-linked by weak inter­molecular C—H⋯O inter­actions. The crystal is further stabilized by C—H⋯π inter­actions.

Related literature  

For bond-length data, see: Allen et al. (1987). For related structures, see: Fun et al. (2010); Harrison et al. (2006); Ruanwas et al. (2011). For background to and applications of bis­chalcones, see: Barnabas et al. (1992); Makarov et al. (2012); Shibata et al. (2009); Wanare et al. (2010); Weber et al. (2005); Zhao et al. (2010)graphic file with name e-70-0o589-scheme1.jpg

Experimental  

Crystal data  

  • C25H32N2O

  • M r = 376.53

  • Monoclinic, Inline graphic

  • a = 10.4290 (4) Å

  • b = 40.4773 (16) Å

  • c = 10.8087 (5) Å

  • β = 100.2621 (13)°

  • V = 4489.8 (3) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 0.07 mm−1

  • T = 296 K

  • 0.42 × 0.38 × 0.34 mm

Data collection  

  • Bruker APEXII D8 Venture diffractometer

  • Absorption correction: multi-scan (SADABS; Bruker, 2009) T min = 0.972, T max = 0.977

  • 79317 measured reflections

  • 10289 independent reflections

  • 5710 reflections with I > 2σ(I)

  • R int = 0.037

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.083

  • wR(F 2) = 0.270

  • S = 1.03

  • 10289 reflections

  • 501 parameters

  • H-atom parameters constrained

  • Δρmax = 0.73 e Å−3

  • Δρmin = −0.50 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXTL, PLATON (Spek, 2009), Mercury (Macrae et al., 2006) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814008356/sj5396sup1.cif

e-70-0o589-sup1.cif (48.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008356/sj5396Isup2.hkl

e-70-0o589-Isup2.hkl (503.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008356/sj5396Isup3.cml

CCDC reference: 997066

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg3 and Cg4 are the centroids of the C1B–C6B and C12B–C17B rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C8B—H8BA⋯O1B i 0.93 2.59 3.479 (4) 160
C16A—H16ACg3ii 0.93 2.91 3.758 (4) 152
C21A—H21ACg4iii 0.96 2.79 3.541 (5) 136

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

PR thanks the Thailand Research Fund through the Royal Golden Jubilee PhD Program (grant No. PHD/0314/2552) and the Center of Excellence for Innovation in Chemistry (PERCH–CIC), Office of the Higher Education, Ministry of Education, Thailand, for financial support. The authors extend their appreciation to The Deanship of Scientific Research at King Saud University for funding the work through research group project No. RGP-VPP-207.

supplementary crystallographic information

1. Comment

Mono-carbonyl analogues of curcumin are an important class of compounds due to their variety of properties. For example these compounds exhibit anti-inflammatory (Zhao et al., 2010), antimalarial (Wanare et al., 2010), antitumor (Shibata et al., 2009) and anti-oxidant properties (Weber et al., 2005). They also act as dye sensitizers (Barnabas et al., 1992) and fluorescence agents (Makarov et al., 2012). These analogues were designed to counteract some of the disadvantageous properties of curcumin such as its poor bioavailability and instability in neutral to basic conditions. We have previously reported the crystal structures of (1E,4E)-1,5-bis(2,4,5-trimethoxyphenyl)penta-1,4-dien-3-one (I) (Fun et al., 2010) and (1E,4E)-1,5-bis(2,4,6-trimethoxyphenyl)penta-1,4-dien-3-one (II) (Ruanwas et al., 2011). The title compound (III) is one of the mono-carbonyl analogues of curcumin designed and synthesized by our group to study anti-tyrosinase activity and its fluorescence properties. It was found that the title compound exhibits fluorescence properties with an orange fluorescence color which will be reported elsewhere with its closely related compounds, it also possesses anti-tyrosinase activity by the dopachrome method with an IC50 value of 0.018 mg ml-1. We reported herein the crystal structure of (III).

There are two crystallographically independent molecules A and B in the asymmetric unit of (III) (Fig. 1) with the same conformation but slight differences in bond angles. The molecular structure of (III), C25H32N2O is unsymmetrical and twisted. The dihedral angle between the C1–C6 and C12–C17 benzene rings is 11.19 (16)° in molecule A (Fig. 2a) whereas it is 14.40 (15)° in molecule B. The central penta-1,4-dien-3-one unit (C7–C11/O1) is planar with r.m.s. deviations 0.0463 (3) and 0.0357 (3) Å for molecules A and B, respectively. The mean plane through this central unit makes dihedral angles of 8.49 (17) and 4.26 (17)° with the two adjacent C1–C6 and C12–C17 benzene rings, respectively in molecule A whereas the corresponding values are 8.42 (16) and 6.18 (16)° in molecule B. The two ethyl groups of each diethylamino substituent in both molecules A and B deviate from the molecular plane and point to opposite sides of the molecule to reduce the steric hindrance between them with the torsion angles C3–N1–C18–C19 = 104.1 (5)°, C3–N1–C20–C21 = 79.5 (5)°, C15–N2–C22–C23 = 106.8 (6)° and C15–N2–C24–C25 = 75.1 (6)° in molecule A. The corresponding values are 96.1 (4), 79.9 (4), 90.3 (4) and 97.6 (5)° in molecule B. The bond distances are in normal ranges (Allen et al., 1987) and are comparable with those found in related structures (Fun et al., 2010; Harrison et al., 2006 and Ruanwas et al., 2011).

In the crystal packing (Fig. 2), the molecules are arranged into chains along the c axis and the adjacent chains are further linked by weak C—H···O interactions (Table 1). The crystal is further stabilized by weak intermolecular C—H···π interactions (Table 1). Interestingly there are only one C—H···O and two C—H···π interactions stabilising the structure of (III). This contrasts sharply with the packing for (I) and (II) where significantly more weak C—H···O and C—H···π interactions were observed (Fun et al., 2010 and Ruanwas et al., 2011).

2. Experimental

The title compound was synthesized by mixing 4-diethylaminobenzaldehyde (0.90 g, 6 mmol) and acetone (0.25 ml, 3 mmol) in ethanol (30 ml). 30% NaOH aqueous solution (5 ml) was then added and the mixture was stirred at room temperature for 2 h, The resulting orange solid obtained was collected by filtration, washed with distilled water and dried. Orange block-shaped single crystals of the title compound were grown in ethanol by slow evaporation, Mp. 440–441 K.

3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with d(C—H) = 0.93 Å for aromatic and CH; 0.96 Å for CH3 atoms. The Uiso values were constrained to be 1.5Ueq of the carrier atom for methyl H atoms and 1.2Ueq for the remaining H atoms. A rotating group model was used for the methyl groups. The same Uij parameters were used for atom pairs N1A/C18A and N2B/C22B.

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound, drawn with 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2.

Fig. 2.

Intermolecular hydrogen bonding interactions in the title compound viewd appoximately along the a axis, showing chains along the c axis. Hydrogen bonds are shown as dashed lines.

Crystal data

C25H32N2O Dx = 1.114 Mg m3
Mr = 376.53 Melting point = 440–441 K
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 10.4290 (4) Å Cell parameters from 10289 reflections
b = 40.4773 (16) Å θ = 2.2–27.5°
c = 10.8087 (5) Å µ = 0.07 mm1
β = 100.2621 (13)° T = 296 K
V = 4489.8 (3) Å3 Block, orange
Z = 8 0.42 × 0.38 × 0.34 mm
F(000) = 1632

Data collection

Bruker APEXII D8 Venture diffractometer 5710 reflections with I > 2σ(I)
φ and ω scans Rint = 0.037
Absorption correction: multi-scan (SADABS; Bruker, 2009) θmax = 27.5°, θmin = 2.2°
Tmin = 0.972, Tmax = 0.977 h = −13→13
79317 measured reflections k = −52→52
10289 independent reflections l = −14→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.083 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.270 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.107P)2 + 2.8109P] where P = (Fo2 + 2Fc2)/3
10289 reflections (Δ/σ)max = 0.001
501 parameters Δρmax = 0.73 e Å3
0 restraints Δρmin = −0.50 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1A 0.1268 (2) 0.96078 (6) 0.7957 (3) 0.1055 (9)
N1A 0.4981 (3) 1.14078 (9) 0.9984 (4) 0.1106 (9)
N2A 0.3434 (3) 0.78543 (9) 0.4536 (4) 0.1131 (12)
C1A 0.2678 (3) 1.07418 (8) 0.9275 (3) 0.0696 (8)
H1AA 0.1786 1.0713 0.9230 0.084*
C2A 0.3180 (3) 1.10444 (8) 0.9626 (3) 0.0713 (8)
H2AA 0.2637 1.1211 0.9826 0.086*
C3A 0.4464 (3) 1.11050 (7) 0.9686 (3) 0.0664 (7)
C4A 0.5193 (3) 1.08345 (8) 0.9393 (3) 0.0717 (8)
H4AA 0.6082 1.0863 0.9418 0.086*
C5A 0.4671 (3) 1.05332 (8) 0.9075 (3) 0.0661 (8)
H5AA 0.5215 1.0362 0.8917 0.079*
C6A 0.3383 (3) 1.04736 (7) 0.8981 (3) 0.0584 (7)
C7A 0.2772 (3) 1.01645 (8) 0.8583 (3) 0.0656 (8)
H7AA 0.1883 1.0161 0.8597 0.079*
C8A 0.3216 (3) 0.98812 (8) 0.8197 (3) 0.0679 (8)
H8AA 0.4098 0.9865 0.8159 0.081*
C9A 0.2389 (3) 0.95964 (8) 0.7835 (3) 0.0716 (8)
C10A 0.2904 (3) 0.93036 (8) 0.7311 (3) 0.0704 (8)
H10A 0.3791 0.9298 0.7289 0.085*
C11A 0.2197 (3) 0.90447 (8) 0.6866 (3) 0.0705 (8)
H11A 0.1328 0.9057 0.6958 0.085*
C12A 0.2524 (3) 0.87467 (8) 0.6263 (3) 0.0670 (8)
C13A 0.1631 (3) 0.85018 (9) 0.5856 (3) 0.0788 (9)
H13A 0.0781 0.8533 0.5983 0.095*
C14A 0.1903 (3) 0.82147 (9) 0.5276 (3) 0.0830 (10)
H14A 0.1235 0.8064 0.5019 0.100*
C15A 0.3124 (3) 0.81444 (9) 0.5066 (3) 0.0816 (9)
C16A 0.4024 (3) 0.83956 (9) 0.5449 (4) 0.0874 (10)
H16A 0.4871 0.8368 0.5307 0.105*
C17A 0.3733 (3) 0.86792 (8) 0.6019 (3) 0.0780 (9)
H17A 0.4391 0.8834 0.6252 0.094*
C18A 0.4105 (4) 1.17228 (11) 0.9994 (5) 0.1106 (9)
H18A 0.4459 1.1910 0.9608 0.133*
H18B 0.3220 1.1682 0.9565 0.133*
C19A 0.4157 (7) 1.1772 (2) 1.1270 (6) 0.191 (3)
H19A 0.3680 1.1969 1.1397 0.287*
H19B 0.5048 1.1797 1.1676 0.287*
H19C 0.3778 1.1586 1.1620 0.287*
C20A 0.6287 (4) 1.14794 (10) 0.9907 (5) 0.1053 (14)
H20A 0.6831 1.1294 1.0234 0.126*
H20B 0.6571 1.1670 1.0427 0.126*
C21A 0.6470 (4) 1.15506 (13) 0.8543 (6) 0.1359 (19)
H21A 0.7367 1.1602 0.8536 0.204*
H21B 0.5934 1.1735 0.8216 0.204*
H21C 0.6221 1.1359 0.8031 0.204*
C22A 0.2518 (5) 0.75844 (13) 0.4196 (6) 0.1341 (19)
H22A 0.2928 0.7379 0.4519 0.161*
H22B 0.1766 0.7619 0.4594 0.161*
C23A 0.2087 (6) 0.7554 (2) 0.2853 (6) 0.192 (3)
H23A 0.1598 0.7353 0.2675 0.288*
H23B 0.2830 0.7549 0.2442 0.288*
H23C 0.1545 0.7739 0.2551 0.288*
C24A 0.4748 (4) 0.77697 (11) 0.4505 (5) 0.1150 (15)
H24A 0.5193 0.7960 0.4232 0.138*
H24B 0.4770 0.7593 0.3901 0.138*
C25A 0.5461 (5) 0.76578 (13) 0.5796 (6) 0.1391 (19)
H25A 0.6335 0.7594 0.5738 0.209*
H25B 0.5012 0.7473 0.6076 0.209*
H25C 0.5485 0.7836 0.6385 0.209*
O1B 0.1127 (3) 0.24045 (6) 1.2120 (2) 0.0964 (8)
N1B 0.3342 (3) 0.42416 (6) 0.9287 (2) 0.0746 (7)
N2B −0.0762 (3) 0.06584 (7) 0.7744 (3) 0.0836 (6)
C1B 0.2823 (3) 0.35510 (8) 1.1411 (3) 0.0695 (8)
H1BA 0.2950 0.3505 1.2267 0.083*
C2B 0.3181 (3) 0.38536 (8) 1.1016 (3) 0.0696 (8)
H2BA 0.3553 0.4008 1.1610 0.084*
C3B 0.2996 (3) 0.39377 (7) 0.9702 (3) 0.0608 (7)
C4B 0.2444 (3) 0.36941 (7) 0.8815 (3) 0.0641 (7)
H4BA 0.2315 0.3740 0.7959 0.077*
C5B 0.2105 (3) 0.33926 (7) 0.9227 (3) 0.0621 (7)
H5BA 0.1756 0.3235 0.8636 0.074*
C6B 0.2267 (3) 0.33099 (7) 1.0545 (3) 0.0585 (7)
C7B 0.1895 (3) 0.29952 (7) 1.1018 (3) 0.0637 (7)
H7BA 0.2029 0.2970 1.1887 0.076*
C8B 0.1380 (3) 0.27394 (7) 1.0328 (3) 0.0628 (7)
H8BA 0.1215 0.2756 0.9456 0.075*
C9B 0.1068 (3) 0.24305 (8) 1.0936 (3) 0.0656 (7)
C10B 0.0684 (3) 0.21543 (7) 1.0052 (3) 0.0642 (7)
H10B 0.0672 0.2185 0.9197 0.077*
C11B 0.0353 (3) 0.18616 (7) 1.0473 (3) 0.0635 (7)
H11B 0.0329 0.1849 1.1327 0.076*
C12B 0.0026 (3) 0.15601 (7) 0.9747 (3) 0.0584 (7)
C13B −0.0287 (3) 0.12771 (7) 1.0357 (3) 0.0627 (7)
H13B −0.0297 0.1286 1.1215 0.075*
C14B −0.0583 (3) 0.09850 (7) 0.9723 (3) 0.0631 (7)
H14B −0.0800 0.0802 1.0162 0.076*
C15B −0.0564 (3) 0.09543 (7) 0.8384 (3) 0.0653 (7)
C16B −0.0273 (3) 0.12416 (8) 0.7745 (3) 0.0712 (8)
H16B −0.0272 0.1235 0.6885 0.085*
C17B 0.0009 (3) 0.15306 (8) 0.8405 (3) 0.0675 (8)
H17B 0.0199 0.1717 0.7969 0.081*
C18B 0.3718 (4) 0.45130 (9) 1.0227 (4) 0.0888 (10)
H18C 0.3391 0.4722 0.9858 0.107*
H18D 0.3316 0.4473 1.0956 0.107*
C19B 0.5093 (5) 0.45352 (13) 1.0617 (5) 0.1251 (16)
H19D 0.5293 0.4709 1.1226 0.188*
H19E 0.5493 0.4583 0.9902 0.188*
H19F 0.5420 0.4329 1.0985 0.188*
C20B 0.3069 (3) 0.43348 (8) 0.7920 (3) 0.0752 (8)
H20C 0.3648 0.4513 0.7779 0.090*
H20D 0.3253 0.4147 0.7423 0.090*
C21B 0.1729 (4) 0.44383 (10) 0.7499 (4) 0.0940 (11)
H21D 0.1603 0.4495 0.6624 0.141*
H21E 0.1546 0.4627 0.7977 0.141*
H21F 0.1152 0.4261 0.7618 0.141*
C22B −0.0880 (4) 0.03430 (9) 0.8460 (3) 0.0836 (6)
H22C −0.0547 0.0159 0.8035 0.100*
H22D −0.0366 0.0360 0.9299 0.100*
C23B −0.2198 (4) 0.02852 (12) 0.8539 (5) 0.1128 (14)
H23D −0.2272 0.0078 0.8956 0.169*
H23E −0.2710 0.0278 0.7708 0.169*
H23F −0.2509 0.0460 0.9008 0.169*
C24B −0.0960 (4) 0.06305 (10) 0.6325 (3) 0.0905 (11)
H24C −0.1620 0.0464 0.6054 0.109*
H24D −0.1289 0.0840 0.5962 0.109*
C25B 0.0196 (5) 0.05458 (15) 0.5839 (5) 0.1399 (19)
H25D −0.0022 0.0517 0.4945 0.210*
H25E 0.0554 0.0344 0.6221 0.210*
H25F 0.0826 0.0720 0.6028 0.210*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1A 0.0640 (15) 0.0930 (18) 0.167 (3) −0.0138 (12) 0.0397 (16) −0.0133 (17)
N1A 0.0909 (18) 0.0963 (19) 0.150 (3) −0.0101 (14) 0.0372 (17) −0.0256 (17)
N2A 0.085 (2) 0.093 (2) 0.164 (3) −0.0271 (18) 0.030 (2) −0.043 (2)
C1A 0.0505 (15) 0.079 (2) 0.083 (2) 0.0094 (14) 0.0213 (14) 0.0172 (17)
C2A 0.0662 (18) 0.068 (2) 0.086 (2) 0.0179 (15) 0.0298 (16) 0.0121 (16)
C3A 0.0608 (17) 0.0623 (18) 0.078 (2) 0.0055 (14) 0.0163 (14) 0.0012 (15)
C4A 0.0486 (15) 0.071 (2) 0.094 (2) 0.0055 (14) 0.0083 (15) −0.0018 (17)
C5A 0.0465 (15) 0.0704 (19) 0.080 (2) 0.0135 (13) 0.0082 (13) 0.0019 (15)
C6A 0.0505 (15) 0.0649 (17) 0.0601 (16) 0.0065 (13) 0.0109 (12) 0.0124 (13)
C7A 0.0502 (15) 0.074 (2) 0.0728 (19) 0.0014 (14) 0.0128 (13) 0.0181 (15)
C8A 0.0539 (16) 0.071 (2) 0.080 (2) −0.0022 (14) 0.0140 (14) 0.0118 (16)
C9A 0.0588 (18) 0.075 (2) 0.083 (2) −0.0042 (15) 0.0173 (15) 0.0096 (16)
C10A 0.0582 (17) 0.073 (2) 0.080 (2) −0.0022 (15) 0.0113 (15) 0.0097 (16)
C11A 0.0581 (17) 0.074 (2) 0.080 (2) −0.0045 (15) 0.0130 (15) 0.0181 (17)
C12A 0.0573 (17) 0.0680 (19) 0.0731 (19) −0.0080 (14) 0.0044 (14) 0.0130 (15)
C13A 0.0582 (18) 0.079 (2) 0.098 (2) −0.0142 (16) 0.0114 (16) 0.0093 (19)
C14A 0.063 (2) 0.084 (2) 0.098 (3) −0.0236 (17) 0.0041 (17) 0.001 (2)
C15A 0.071 (2) 0.078 (2) 0.095 (2) −0.0172 (17) 0.0119 (17) −0.0069 (19)
C16A 0.0618 (19) 0.083 (2) 0.118 (3) −0.0147 (17) 0.0155 (18) −0.010 (2)
C17A 0.0570 (18) 0.070 (2) 0.104 (3) −0.0157 (15) 0.0064 (16) 0.0020 (18)
C18A 0.0909 (18) 0.0963 (19) 0.150 (3) −0.0101 (14) 0.0372 (17) −0.0256 (17)
C19A 0.185 (7) 0.266 (9) 0.112 (4) −0.041 (6) −0.001 (4) 0.006 (5)
C20A 0.074 (2) 0.077 (2) 0.162 (4) −0.0083 (18) 0.015 (2) −0.015 (3)
C21A 0.080 (3) 0.143 (4) 0.189 (6) −0.003 (3) 0.037 (3) 0.031 (4)
C22A 0.112 (4) 0.131 (4) 0.164 (5) −0.035 (3) 0.038 (3) −0.054 (4)
C23A 0.145 (5) 0.288 (9) 0.141 (5) −0.077 (6) 0.018 (4) −0.055 (6)
C24A 0.100 (3) 0.099 (3) 0.157 (5) −0.020 (2) 0.051 (3) −0.039 (3)
C25A 0.120 (4) 0.123 (4) 0.179 (6) 0.011 (3) 0.041 (4) −0.013 (4)
O1B 0.134 (2) 0.0927 (17) 0.0633 (14) −0.0248 (15) 0.0186 (13) −0.0008 (12)
N1B 0.0829 (18) 0.0649 (16) 0.0698 (16) −0.0111 (13) −0.0032 (13) −0.0023 (13)
N2B 0.0940 (16) 0.0742 (14) 0.0833 (15) −0.0112 (12) 0.0177 (12) −0.0050 (11)
C1B 0.082 (2) 0.071 (2) 0.0533 (16) −0.0018 (16) 0.0069 (14) −0.0071 (14)
C2B 0.080 (2) 0.0655 (19) 0.0590 (17) −0.0057 (15) 0.0018 (14) −0.0119 (14)
C3B 0.0572 (16) 0.0609 (17) 0.0621 (17) 0.0046 (13) 0.0046 (13) −0.0066 (13)
C4B 0.0693 (18) 0.0680 (19) 0.0514 (15) 0.0025 (14) 0.0006 (13) −0.0048 (13)
C5B 0.0631 (17) 0.0613 (18) 0.0586 (17) −0.0005 (13) 0.0021 (13) −0.0118 (13)
C6B 0.0573 (15) 0.0621 (17) 0.0557 (16) 0.0044 (12) 0.0091 (12) −0.0044 (13)
C7B 0.0647 (17) 0.0709 (19) 0.0559 (16) 0.0036 (14) 0.0119 (13) −0.0056 (14)
C8B 0.0647 (17) 0.0656 (18) 0.0583 (16) 0.0015 (14) 0.0116 (13) −0.0017 (14)
C9B 0.0678 (18) 0.0706 (19) 0.0590 (18) −0.0025 (14) 0.0131 (14) −0.0008 (14)
C10B 0.0646 (17) 0.0654 (18) 0.0631 (17) −0.0018 (14) 0.0127 (13) 0.0044 (14)
C11B 0.0582 (16) 0.0703 (19) 0.0617 (17) 0.0000 (13) 0.0099 (13) 0.0069 (14)
C12B 0.0517 (15) 0.0583 (16) 0.0649 (17) 0.0045 (12) 0.0095 (12) 0.0089 (13)
C13B 0.0603 (16) 0.0697 (19) 0.0580 (16) 0.0013 (13) 0.0104 (13) 0.0109 (14)
C14B 0.0608 (16) 0.0608 (17) 0.0681 (18) −0.0019 (13) 0.0126 (13) 0.0143 (14)
C15B 0.0634 (17) 0.0627 (18) 0.0690 (19) 0.0015 (13) 0.0094 (14) 0.0050 (14)
C16B 0.085 (2) 0.070 (2) 0.0606 (17) 0.0006 (16) 0.0186 (15) 0.0078 (15)
C17B 0.0721 (19) 0.0623 (18) 0.0706 (19) 0.0015 (14) 0.0195 (15) 0.0147 (15)
C18B 0.101 (3) 0.078 (2) 0.084 (2) −0.0184 (19) 0.006 (2) −0.0005 (18)
C19B 0.109 (3) 0.142 (4) 0.118 (4) −0.041 (3) 0.002 (3) −0.017 (3)
C20B 0.076 (2) 0.069 (2) 0.079 (2) −0.0070 (16) 0.0113 (16) 0.0002 (16)
C21B 0.086 (2) 0.094 (3) 0.097 (3) 0.009 (2) 0.003 (2) 0.012 (2)
C22B 0.0940 (16) 0.0742 (14) 0.0833 (15) −0.0112 (12) 0.0177 (12) −0.0050 (11)
C23B 0.077 (2) 0.127 (3) 0.138 (4) 0.009 (2) 0.030 (2) −0.006 (3)
C24B 0.111 (3) 0.083 (2) 0.074 (2) −0.008 (2) 0.008 (2) −0.0031 (18)
C25B 0.120 (4) 0.199 (6) 0.106 (3) 0.020 (4) 0.031 (3) −0.002 (4)

Geometric parameters (Å, º)

O1A—C9A 1.201 (4) O1B—C9B 1.275 (3)
N1A—C3A 1.355 (4) N1B—C3B 1.379 (4)
N1A—C20A 1.409 (5) N1B—C18B 1.500 (4)
N1A—C18A 1.570 (5) N1B—C20B 1.502 (4)
N2A—C15A 1.370 (5) N2B—C15B 1.380 (4)
N2A—C24A 1.419 (5) N2B—C22B 1.509 (4)
N2A—C22A 1.455 (5) N2B—C24B 1.515 (4)
C1A—C2A 1.359 (5) C1B—C2B 1.371 (4)
C1A—C6A 1.379 (4) C1B—C6B 1.404 (4)
C1A—H1AA 0.9300 C1B—H1BA 0.9300
C2A—C3A 1.351 (4) C2B—C3B 1.440 (4)
C2A—H2AA 0.9300 C2B—H2BA 0.9300
C3A—C4A 1.401 (4) C3B—C4B 1.423 (4)
C4A—C5A 1.355 (4) C4B—C5B 1.367 (4)
C4A—H4AA 0.9300 C4B—H4BA 0.9300
C5A—C6A 1.351 (4) C5B—C6B 1.444 (4)
C5A—H5AA 0.9300 C5B—H5BA 0.9300
C6A—C7A 1.434 (4) C6B—C7B 1.451 (4)
C7A—C8A 1.331 (4) C7B—C8B 1.332 (4)
C7A—H7AA 0.9300 C7B—H7BA 0.9300
C8A—C9A 1.451 (4) C8B—C9B 1.475 (4)
C8A—H8AA 0.9300 C8B—H8BA 0.9300
C9A—C10A 1.456 (5) C9B—C10B 1.478 (4)
C10A—C11A 1.322 (4) C10B—C11B 1.336 (4)
C10A—H10A 0.9300 C10B—H10B 0.9300
C11A—C12A 1.440 (5) C11B—C12B 1.458 (4)
C11A—H11A 0.9300 C11B—H11B 0.9300
C12A—C17A 1.361 (4) C12B—C13B 1.390 (4)
C12A—C13A 1.378 (4) C12B—C17B 1.453 (4)
C13A—C14A 1.374 (5) C13B—C14B 1.374 (4)
C13A—H13A 0.9300 C13B—H13B 0.9300
C14A—C15A 1.362 (5) C14B—C15B 1.457 (4)
C14A—H14A 0.9300 C14B—H14B 0.9300
C15A—C16A 1.396 (5) C15B—C16B 1.413 (4)
C16A—C17A 1.362 (5) C16B—C17B 1.374 (4)
C16A—H16A 0.9300 C16B—H16B 0.9300
C17A—H17A 0.9300 C17B—H17B 0.9300
C18A—C19A 1.385 (7) C18B—C19B 1.423 (6)
C18A—H18A 0.9700 C18B—H18C 0.9700
C18A—H18B 0.9700 C18B—H18D 0.9700
C19A—H19A 0.9600 C19B—H19D 0.9600
C19A—H19B 0.9600 C19B—H19E 0.9600
C19A—H19C 0.9600 C19B—H19F 0.9600
C20A—C21A 1.547 (7) C20B—C21B 1.453 (5)
C20A—H20A 0.9700 C20B—H20C 0.9700
C20A—H20B 0.9700 C20B—H20D 0.9700
C21A—H21A 0.9600 C21B—H21D 0.9600
C21A—H21B 0.9600 C21B—H21E 0.9600
C21A—H21C 0.9600 C21B—H21F 0.9600
C22A—C23A 1.447 (7) C22B—C23B 1.412 (5)
C22A—H22A 0.9700 C22B—H22C 0.9700
C22A—H22B 0.9700 C22B—H22D 0.9700
C23A—H23A 0.9600 C23B—H23D 0.9600
C23A—H23B 0.9600 C23B—H23E 0.9600
C23A—H23C 0.9600 C23B—H23F 0.9600
C24A—C25A 1.528 (7) C24B—C25B 1.440 (6)
C24A—H24A 0.9700 C24B—H24C 0.9700
C24A—H24B 0.9700 C24B—H24D 0.9700
C25A—H25A 0.9600 C25B—H25D 0.9600
C25A—H25B 0.9600 C25B—H25E 0.9600
C25A—H25C 0.9600 C25B—H25F 0.9600
C3A—N1A—C20A 121.3 (3) C3B—N1B—C18B 119.0 (3)
C3A—N1A—C18A 121.9 (3) C3B—N1B—C20B 121.9 (2)
C20A—N1A—C18A 113.8 (3) C18B—N1B—C20B 117.6 (3)
C15A—N2A—C24A 121.2 (3) C15B—N2B—C22B 119.7 (3)
C15A—N2A—C22A 123.7 (4) C15B—N2B—C24B 123.6 (3)
C24A—N2A—C22A 114.0 (4) C22B—N2B—C24B 116.5 (3)
C2A—C1A—C6A 125.4 (3) C2B—C1B—C6B 121.1 (3)
C2A—C1A—H1AA 117.3 C2B—C1B—H1BA 119.4
C6A—C1A—H1AA 117.3 C6B—C1B—H1BA 119.4
C3A—C2A—C1A 120.4 (3) C1B—C2B—C3B 121.5 (3)
C3A—C2A—H2AA 119.8 C1B—C2B—H2BA 119.3
C1A—C2A—H2AA 119.8 C3B—C2B—H2BA 119.3
C2A—C3A—N1A 121.7 (3) N1B—C3B—C4B 119.8 (3)
C2A—C3A—C4A 114.8 (3) N1B—C3B—C2B 122.3 (3)
N1A—C3A—C4A 123.5 (3) C4B—C3B—C2B 117.9 (3)
C5A—C4A—C3A 123.4 (3) C5B—C4B—C3B 119.7 (3)
C5A—C4A—H4AA 118.3 C5B—C4B—H4BA 120.1
C3A—C4A—H4AA 118.3 C3B—C4B—H4BA 120.1
C6A—C5A—C4A 122.0 (3) C4B—C5B—C6B 122.5 (3)
C6A—C5A—H5AA 119.0 C4B—C5B—H5BA 118.8
C4A—C5A—H5AA 119.0 C6B—C5B—H5BA 118.8
C5A—C6A—C1A 113.9 (3) C1B—C6B—C5B 117.3 (3)
C5A—C6A—C7A 124.1 (3) C1B—C6B—C7B 118.7 (3)
C1A—C6A—C7A 121.9 (3) C5B—C6B—C7B 124.0 (3)
C8A—C7A—C6A 133.1 (3) C8B—C7B—C6B 126.3 (3)
C8A—C7A—H7AA 113.4 C8B—C7B—H7BA 116.9
C6A—C7A—H7AA 113.4 C6B—C7B—H7BA 116.9
C7A—C8A—C9A 123.0 (3) C7B—C8B—C9B 120.5 (3)
C7A—C8A—H8AA 118.5 C7B—C8B—H8BA 119.7
C9A—C8A—H8AA 118.5 C9B—C8B—H8BA 119.7
O1A—C9A—C8A 118.9 (3) O1B—C9B—C8B 122.8 (3)
O1A—C9A—C10A 120.5 (3) O1B—C9B—C10B 123.0 (3)
C8A—C9A—C10A 120.6 (3) C8B—C9B—C10B 114.2 (3)
C11A—C10A—C9A 124.5 (3) C11B—C10B—C9B 120.5 (3)
C11A—C10A—H10A 117.7 C11B—C10B—H10B 119.7
C9A—C10A—H10A 117.7 C9B—C10B—H10B 119.7
C10A—C11A—C12A 131.8 (3) C10B—C11B—C12B 127.5 (3)
C10A—C11A—H11A 114.1 C10B—C11B—H11B 116.2
C12A—C11A—H11A 114.1 C12B—C11B—H11B 116.2
C17A—C12A—C13A 113.0 (3) C13B—C12B—C17B 116.4 (3)
C17A—C12A—C11A 123.9 (3) C13B—C12B—C11B 119.1 (3)
C13A—C12A—C11A 123.1 (3) C17B—C12B—C11B 124.5 (3)
C14A—C13A—C12A 124.8 (3) C14B—C13B—C12B 121.5 (3)
C14A—C13A—H13A 117.6 C14B—C13B—H13B 119.2
C12A—C13A—H13A 117.6 C12B—C13B—H13B 119.2
C15A—C14A—C13A 121.9 (3) C13B—C14B—C15B 121.9 (3)
C15A—C14A—H14A 119.1 C13B—C14B—H14B 119.1
C13A—C14A—H14A 119.1 C15B—C14B—H14B 119.1
C14A—C15A—N2A 123.1 (3) N2B—C15B—C16B 119.7 (3)
C14A—C15A—C16A 113.4 (3) N2B—C15B—C14B 123.0 (3)
N2A—C15A—C16A 123.5 (3) C16B—C15B—C14B 117.2 (3)
C17A—C16A—C15A 123.8 (3) C17B—C16B—C15B 119.5 (3)
C17A—C16A—H16A 118.1 C17B—C16B—H16B 120.3
C15A—C16A—H16A 118.1 C15B—C16B—H16B 120.3
C12A—C17A—C16A 123.1 (3) C16B—C17B—C12B 123.5 (3)
C12A—C17A—H17A 118.5 C16B—C17B—H17B 118.3
C16A—C17A—H17A 118.5 C12B—C17B—H17B 118.3
C19A—C18A—N1A 101.9 (5) C19B—C18B—N1B 112.0 (4)
C19A—C18A—H18A 111.4 C19B—C18B—H18C 109.2
N1A—C18A—H18A 111.4 N1B—C18B—H18C 109.2
C19A—C18A—H18B 111.4 C19B—C18B—H18D 109.2
N1A—C18A—H18B 111.4 N1B—C18B—H18D 109.2
H18A—C18A—H18B 109.3 H18C—C18B—H18D 107.9
C18A—C19A—H19A 109.5 C18B—C19B—H19D 109.5
C18A—C19A—H19B 109.5 C18B—C19B—H19E 109.5
H19A—C19A—H19B 109.5 H19D—C19B—H19E 109.5
C18A—C19A—H19C 109.5 C18B—C19B—H19F 109.5
H19A—C19A—H19C 109.5 H19D—C19B—H19F 109.5
H19B—C19A—H19C 109.5 H19E—C19B—H19F 109.5
N1A—C20A—C21A 112.3 (4) C21B—C20B—N1B 112.6 (3)
N1A—C20A—H20A 109.1 C21B—C20B—H20C 109.1
C21A—C20A—H20A 109.1 N1B—C20B—H20C 109.1
N1A—C20A—H20B 109.1 C21B—C20B—H20D 109.1
C21A—C20A—H20B 109.1 N1B—C20B—H20D 109.1
H20A—C20A—H20B 107.9 H20C—C20B—H20D 107.8
C20A—C21A—H21A 109.5 C20B—C21B—H21D 109.5
C20A—C21A—H21B 109.5 C20B—C21B—H21E 109.5
H21A—C21A—H21B 109.5 H21D—C21B—H21E 109.5
C20A—C21A—H21C 109.5 C20B—C21B—H21F 109.5
H21A—C21A—H21C 109.5 H21D—C21B—H21F 109.5
H21B—C21A—H21C 109.5 H21E—C21B—H21F 109.5
C23A—C22A—N2A 113.0 (5) C23B—C22B—N2B 109.9 (3)
C23A—C22A—H22A 109.0 C23B—C22B—H22C 109.7
N2A—C22A—H22A 109.0 N2B—C22B—H22C 109.7
C23A—C22A—H22B 109.0 C23B—C22B—H22D 109.7
N2A—C22A—H22B 109.0 N2B—C22B—H22D 109.7
H22A—C22A—H22B 107.8 H22C—C22B—H22D 108.2
C22A—C23A—H23A 109.5 C22B—C23B—H23D 109.5
C22A—C23A—H23B 109.5 C22B—C23B—H23E 109.5
H23A—C23A—H23B 109.5 H23D—C23B—H23E 109.5
C22A—C23A—H23C 109.5 C22B—C23B—H23F 109.5
H23A—C23A—H23C 109.5 H23D—C23B—H23F 109.5
H23B—C23A—H23C 109.5 H23E—C23B—H23F 109.5
N2A—C24A—C25A 111.4 (4) C25B—C24B—N2B 114.5 (4)
N2A—C24A—H24A 109.3 C25B—C24B—H24C 108.6
C25A—C24A—H24A 109.3 N2B—C24B—H24C 108.6
N2A—C24A—H24B 109.3 C25B—C24B—H24D 108.6
C25A—C24A—H24B 109.3 N2B—C24B—H24D 108.6
H24A—C24A—H24B 108.0 H24C—C24B—H24D 107.6
C24A—C25A—H25A 109.5 C24B—C25B—H25D 109.5
C24A—C25A—H25B 109.5 C24B—C25B—H25E 109.5
H25A—C25A—H25B 109.5 H25D—C25B—H25E 109.5
C24A—C25A—H25C 109.5 C24B—C25B—H25F 109.5
H25A—C25A—H25C 109.5 H25D—C25B—H25F 109.5
H25B—C25A—H25C 109.5 H25E—C25B—H25F 109.5
C6A—C1A—C2A—C3A 1.4 (5) C6B—C1B—C2B—C3B 0.4 (5)
C1A—C2A—C3A—N1A 177.4 (3) C18B—N1B—C3B—C4B 170.2 (3)
C1A—C2A—C3A—C4A −1.4 (5) C20B—N1B—C3B—C4B 4.4 (4)
C20A—N1A—C3A—C2A −172.7 (4) C18B—N1B—C3B—C2B −10.3 (4)
C18A—N1A—C3A—C2A −13.4 (6) C20B—N1B—C3B—C2B −176.1 (3)
C20A—N1A—C3A—C4A 6.0 (6) C1B—C2B—C3B—N1B 179.5 (3)
C18A—N1A—C3A—C4A 165.3 (4) C1B—C2B—C3B—C4B −1.0 (4)
C2A—C3A—C4A—C5A −0.1 (5) N1B—C3B—C4B—C5B 179.8 (3)
N1A—C3A—C4A—C5A −178.9 (3) C2B—C3B—C4B—C5B 0.3 (4)
C3A—C4A—C5A—C6A 2.0 (5) C3B—C4B—C5B—C6B 0.9 (4)
C4A—C5A—C6A—C1A −2.0 (4) C2B—C1B—C6B—C5B 0.7 (4)
C4A—C5A—C6A—C7A 176.5 (3) C2B—C1B—C6B—C7B −179.4 (3)
C2A—C1A—C6A—C5A 0.4 (5) C4B—C5B—C6B—C1B −1.4 (4)
C2A—C1A—C6A—C7A −178.2 (3) C4B—C5B—C6B—C7B 178.7 (3)
C5A—C6A—C7A—C8A −2.1 (5) C1B—C6B—C7B—C8B −178.7 (3)
C1A—C6A—C7A—C8A 176.2 (3) C5B—C6B—C7B—C8B 1.1 (5)
C6A—C7A—C8A—C9A −179.9 (3) C6B—C7B—C8B—C9B 178.9 (3)
C7A—C8A—C9A—O1A −4.7 (5) C7B—C8B—C9B—O1B 8.3 (5)
C7A—C8A—C9A—C10A 174.3 (3) C7B—C8B—C9B—C10B −171.6 (3)
O1A—C9A—C10A—C11A 4.6 (5) O1B—C9B—C10B—C11B 1.2 (5)
C8A—C9A—C10A—C11A −174.4 (3) C8B—C9B—C10B—C11B −178.8 (3)
C9A—C10A—C11A—C12A 176.3 (3) C9B—C10B—C11B—C12B −176.1 (3)
C10A—C11A—C12A—C17A −0.9 (6) C10B—C11B—C12B—C13B 179.6 (3)
C10A—C11A—C12A—C13A −179.8 (3) C10B—C11B—C12B—C17B 0.0 (5)
C17A—C12A—C13A—C14A 0.8 (5) C17B—C12B—C13B—C14B 0.7 (4)
C11A—C12A—C13A—C14A 179.8 (3) C11B—C12B—C13B—C14B −179.0 (3)
C12A—C13A—C14A—C15A 1.1 (6) C12B—C13B—C14B—C15B 1.0 (4)
C13A—C14A—C15A—N2A 177.3 (4) C22B—N2B—C15B—C16B 171.2 (3)
C13A—C14A—C15A—C16A −2.5 (5) C24B—N2B—C15B—C16B −13.0 (5)
C24A—N2A—C15A—C14A −170.5 (4) C22B—N2B—C15B—C14B −5.9 (5)
C22A—N2A—C15A—C14A −3.1 (7) C24B—N2B—C15B—C14B 169.9 (3)
C24A—N2A—C15A—C16A 9.2 (7) C13B—C14B—C15B—N2B 175.0 (3)
C22A—N2A—C15A—C16A 176.6 (5) C13B—C14B—C15B—C16B −2.2 (4)
C14A—C15A—C16A—C17A 2.3 (6) N2B—C15B—C16B—C17B −175.6 (3)
N2A—C15A—C16A—C17A −177.5 (4) C14B—C15B—C16B—C17B 1.7 (4)
C13A—C12A—C17A—C16A −1.0 (5) C15B—C16B—C17B—C12B −0.1 (5)
C11A—C12A—C17A—C16A 179.9 (3) C13B—C12B—C17B—C16B −1.2 (4)
C15A—C16A—C17A—C12A −0.5 (6) C11B—C12B—C17B—C16B 178.4 (3)
C3A—N1A—C18A—C19A 104.1 (5) C3B—N1B—C18B—C19B 96.1 (4)
C20A—N1A—C18A—C19A −95.1 (5) C20B—N1B—C18B—C19B −97.5 (4)
C3A—N1A—C20A—C21A 79.5 (5) C3B—N1B—C20B—C21B 79.9 (4)
C18A—N1A—C20A—C21A −81.4 (5) C18B—N1B—C20B—C21B −86.1 (4)
C15A—N2A—C22A—C23A 106.8 (6) C15B—N2B—C22B—C23B 90.3 (4)
C24A—N2A—C22A—C23A −85.0 (6) C24B—N2B—C22B—C23B −85.8 (4)
C15A—N2A—C24A—C25A 75.1 (6) C15B—N2B—C24B—C25B 97.6 (5)
C22A—N2A—C24A—C25A −93.4 (5) C22B—N2B—C24B—C25B −86.5 (5)

Hydrogen-bond geometry (Å, º)

Cg3 and Cg4 are the centroids of the C1B–C6B and C12B–C17B rings, respectively.

D—H···A D—H H···A D···A D—H···A
C8B—H8BA···O1Bi 0.93 2.59 3.479 (4) 160
C16A—H16A···Cg3ii 0.93 2.91 3.758 (4) 152
C21A—H21A···Cg4iii 0.96 2.79 3.541 (5) 136

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) −x+1, y+1/2, −z+5/2; (iii) x+1, y+1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: SJ5396).

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Barnabas, M. V., Liu, A., Trifunac, A. D., Krongauz, V. V. & Chang, C. T. (1992). J. Phys. Chem. 96, 212–217.
  3. Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Fun, H.-K., Ruanwas, P. & Chantrapromma, S. (2010). Acta Cryst. E66, o307–o308. [DOI] [PMC free article] [PubMed]
  5. Harrison, W. T. A., Sarojini, B. K., Vijaya Raj, K. K., Yathirajan, H. S. & Narayana, B. (2006). Acta Cryst. E62, o1522–o1523.
  6. Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453–457.
  7. Makarov, M. V., Leonova, E. S., Rybalkina, E. Yu., Khrustalev, V. N., Shepel, N. E., Roschenthaler, G.-V., Timofeeva, T. V. & Odinets, I. L. (2012). Arch. Pharm. Chem. Life Sci. 345, 349–359. [DOI] [PubMed]
  8. Ruanwas, P., Chantrapromma, S. & Fun, H.-K. (2011). Acta Cryst. E67, o33–o34. [DOI] [PMC free article] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Shibata, H., Yamakoshi, H., Sato, A., Ohori, H., Kakudo, Y., Kudo, C., Takahashi, Y., Watanabe, M., Takano, H., Ishioka, C., Noda, T. & Iwabuchi, Y. (2009). Cancer Sci. 100, 956–960. [DOI] [PMC free article] [PubMed]
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Wanare, G., Aher, R., Kawathekar, N., Ranjan, R., Kaushik, N. K. & Sahal, D. (2010). Bioorg. Med. Chem. Lett. 20, 4675–4678. [DOI] [PubMed]
  13. Weber, W. M., Hunsaker, L. A., Abcouwer, S. F., Decka, L. M. & Vander, D. L. (2005). Bioorg. Med. Chem. 13, 3811–3820. [DOI] [PubMed]
  14. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  15. Zhao, C., Yang, J., Wang, Y., Liang, D., Yang, X., Li, X., Wu, J., Wu, X., Yang, S., Li, X. & Liang, G. (2010). Bioorg. Med. Chem. 18, 2388–2393. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814008356/sj5396sup1.cif

e-70-0o589-sup1.cif (48.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008356/sj5396Isup2.hkl

e-70-0o589-Isup2.hkl (503.2KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008356/sj5396Isup3.cml

CCDC reference: 997066

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES