Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 30;70(Pt 5):o621. doi: 10.1107/S1600536814008770

2-[2-(2-Nitro­phen­yl)-4,5-diphenyl-1H-imidazol-1-yl]-3-phenyl­propan-1-ol

Yizhen Li a, Pu Mao a, Yongmei Xiao a, Liangru Yang a, Lingbo Qu a,*
PMCID: PMC4011293  PMID: 24860411

Abstract

In the title compound, C30H25N3O3, the central imidazole ring forms dihedral angles of 77.34 (6), 12.56 (6) and 87.04 (6)°, respectively, with the o-nitro­benzene ring and the phenyl substituents in the 5- and 4-positions. The mol­ecular conformation is stabilized by weak intra­molecular C—H⋯π inter­actions. In the crystal, mol­ecules are linked by O—H⋯N hydrogen bonds, forming chains running parallel to the b-axis direction.

Related literature  

For the synthesis of imidazole derivatives, see: Ding et al. (2005); Heightman & Vasella (1999); Wasserscheid & Keim (2000). For related compounds synthesized by our group, see: Gao, Yang et al. (2013); Gao, Wang et al. (2013); Mao et al. (2010); Yang et al. (2012); Xiao et al. (2012).graphic file with name e-70-0o621-scheme1.jpg

Experimental  

Crystal data  

  • C30H25N3O3

  • M r = 475.53

  • Orthorhombic, Inline graphic

  • a = 10.54812 (16) Å

  • b = 12.77836 (19) Å

  • c = 18.4800 (3) Å

  • V = 2490.87 (6) Å3

  • Z = 4

  • Cu Kα radiation

  • μ = 0.67 mm−1

  • T = 291 K

  • 0.25 × 0.22 × 0.20 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) T min = 0.638, T max = 1.000

  • 23649 measured reflections

  • 4460 independent reflections

  • 4263 reflections with I > 2σ(I)

  • R int = 0.054

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.038

  • wR(F 2) = 0.111

  • S = 1.05

  • 4460 reflections

  • 330 parameters

  • H atoms treated by a mixture of independent and constrained refinement

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.14 e Å−3

  • Absolute structure: Flack (1983); 1925 Friedel pairs

  • Absolute structure parameter: 0.2 (2)

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814008770/rz5116sup1.cif

e-70-0o621-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008770/rz5116Isup2.hkl

e-70-0o621-Isup2.hkl (218.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008770/rz5116Isup3.cml

CCDC reference: 997919

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C9–C14 and C22–C27 rings, respectively.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯Cg1 0.93 2.84 3.715 (2) 157
C21—H21⋯Cg2 0.93 2.81 3.501 (2) 132
O3—H3⋯N1i 0.90 (3) 1.89 (3) 2.7935 (17) 179 (3)

Symmetry code: (i) Inline graphic.

Acknowledgments

The authors thank Ms Y. Zhu for technical assistance. This research was supported by the National Natural Science Foundation of China (No. 21172055) and the Program for Innovative Research Team from Zhengzhou (131PCXTD605).

supplementary crystallographic information

1. Comment

Imidazole and its derivatives attracted research interest due to their important roles in the field of biology, medicine and chemistry. Imidazoles containing chiral N-substituent have high potentiality for application in coordination chemistry and transition metal catalysis (Ding et al., 2005; Heightman & Vasella, 1999; Wasserscheid & Keim, 2000). Our group is interested in the synthesis and application of chiral imidazolium compounds derived from natural amino acids (Gao, Yang et al., 2013; Gao, Wang et al., 2013; Mao et al., 2010; Yang et al., 2012; Xiao et al., 2012). Here we present the synthesis of a chiral nirtrophenyl-substituted imidazole derivative obtained from the condensation of a chiral aminoalcohol, nitrobenzaldehyde, ammonium acetate and benzyl. The synthetic procedure provides valuable information for the research and development of novel chiral catalysts.

The molecular structure of the title compound is shown in Figure 1. As expected, the imidazole core (C7/C8/N2/C15/N1) is essentially planar (r.m.s. deviation = 0.0056 Å). The dihedral angles it forms with the o-nitrobenzene ring and the two phenyl substituents (C1—C6, C9—C14) are 77.34 (6), 12.56 (6) and 87.04 (6)°, respectively. Two intramolecular C—H···π interactions stabilizing the molecular conformation are observed (Table 1). In the crystal, molecules are linked by O—H···N hydrogen bonds (Table 1), forming chains running parallel to the b axis.

2. Experimental

L-Phenylalaninol (15.1 g, 0.1 mol) was added to the solvent (CH3OH, 200 mL) with ammonium acetate (7.7 g, 0.1 mol) and dibenzoyl (21.0 g, 0.1 mol) in a three-neck flask. The system was stirred until L-phenylalaninol was dissolved completely, affording a transparent dark yellow solution. The flask was then put into an ice bath and o-nitrobenzaldehyde (15.1 g, 0.1 mol) in MeOH (20 ml) was added dropwise to the solution. The mixture was heated to 65°C for 12 h. The solvent was eliminated by vacuum rotary evaporation and the crude product obtained purified using column chromatography (ethyl acetate/ethanol/triethylamine, 10:1:0.1 v/v/v). Crystallization of the product by slow evaporation of a methanol/diethyl ether solution (1:1 v/v) afforded crystals of the title compound suitable for X-ray analysis.

3. Refinement

The hydroxyl H atom was located in a difference Fourier map and refined freely. All other H atoms were placed in calculated positions with C—H = 0.93–0.98 Å and refined as riding, with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.

Fig. 1.

The molecular structure of the title compound showing 30% probability displacement ellipsoids. Hydrogen atoms, but those associated to the chiral C29 carbon atom and hydroxyl group, are omitted for clarity.

Crystal data

C30H25N3O3 Dx = 1.268 Mg m3
Mr = 475.53 Cu Kα radiation, λ = 1.5418 Å
Orthorhombic, P212121 Cell parameters from 12200 reflections
a = 10.54812 (16) Å θ = 4.2–72.5°
b = 12.77836 (19) Å µ = 0.67 mm1
c = 18.4800 (3) Å T = 291 K
V = 2490.87 (6) Å3 , yellow
Z = 4 0.25 × 0.22 × 0.20 mm
F(000) = 1000

Data collection

Agilent Xcalibur (Eos, Gemini) diffractometer 4460 independent reflections
Radiation source: Enhance (Cu) X-ray Source 4263 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.054
Detector resolution: 16.2312 pixels mm-1 θmax = 67.1°, θmin = 4.2°
ω scans h = −12→12
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2011) k = −15→14
Tmin = 0.638, Tmax = 1.000 l = −22→21
23649 measured reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.038 w = 1/[σ2(Fo2) + (0.0732P)2 + 0.1165P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.111 (Δ/σ)max = 0.001
S = 1.05 Δρmax = 0.16 e Å3
4460 reflections Δρmin = −0.14 e Å3
330 parameters Extinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraints Extinction coefficient: 0.0020 (3)
Primary atom site location: structure-invariant direct methods Absolute structure: Flack (1983); 1925 Friedel pairs
Secondary atom site location: difference Fourier map Absolute structure parameter: 0.2 (2)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.3588 (2) 0.84256 (18) 0.76549 (10) 0.0943 (6)
O2 0.2703 (2) 0.8468 (2) 0.86999 (14) 0.1240 (9)
O3 0.69834 (12) 0.98409 (9) 0.67498 (6) 0.0495 (3)
N1 0.42502 (13) 0.60777 (11) 0.72217 (7) 0.0421 (3)
N2 0.58116 (12) 0.71200 (10) 0.68724 (7) 0.0381 (3)
N3 0.3581 (2) 0.82279 (15) 0.82985 (10) 0.0720 (5)
C1 0.2345 (2) 0.50148 (18) 0.63890 (11) 0.0643 (5)
H1 0.2249 0.5090 0.6887 0.077*
C2 0.1417 (3) 0.4507 (2) 0.59907 (14) 0.0823 (8)
H2 0.0699 0.4249 0.6222 0.099*
C3 0.1554 (3) 0.43820 (18) 0.52542 (13) 0.0763 (7)
H3A 0.0929 0.4043 0.4988 0.092*
C4 0.2609 (2) 0.47571 (15) 0.49166 (11) 0.0629 (5)
H4 0.2704 0.4667 0.4420 0.075*
C5 0.3536 (2) 0.52686 (14) 0.53059 (10) 0.0537 (4)
H5 0.4251 0.5521 0.5068 0.064*
C6 0.34175 (17) 0.54120 (12) 0.60510 (9) 0.0450 (4)
C7 0.43445 (15) 0.60224 (12) 0.64747 (8) 0.0406 (3)
C8 0.53212 (15) 0.66520 (12) 0.62466 (8) 0.0393 (3)
C9 0.58588 (15) 0.67981 (14) 0.55083 (8) 0.0442 (4)
C10 0.54220 (18) 0.75864 (16) 0.50552 (9) 0.0537 (4)
H10 0.4809 0.8053 0.5219 0.064*
C11 0.5900 (3) 0.7680 (2) 0.43568 (10) 0.0741 (7)
H11 0.5611 0.8214 0.4058 0.089*
C12 0.6789 (3) 0.6993 (3) 0.41067 (11) 0.0847 (8)
H12 0.7111 0.7064 0.3641 0.102*
C13 0.7207 (2) 0.6199 (2) 0.45434 (13) 0.0817 (8)
H13 0.7803 0.5725 0.4370 0.098*
C14 0.6749 (2) 0.60967 (18) 0.52423 (11) 0.0624 (5)
H14 0.7039 0.5555 0.5535 0.075*
C15 0.51231 (14) 0.67378 (12) 0.74329 (8) 0.0390 (3)
C16 0.53902 (15) 0.70021 (13) 0.82028 (8) 0.0434 (3)
C17 0.46705 (19) 0.76810 (14) 0.86142 (9) 0.0518 (4)
C18 0.4959 (3) 0.78953 (19) 0.93326 (12) 0.0753 (7)
H18 0.4461 0.8357 0.9597 0.090*
C19 0.5983 (3) 0.7422 (2) 0.96475 (11) 0.0810 (8)
H19 0.6188 0.7567 1.0126 0.097*
C20 0.6698 (2) 0.6741 (2) 0.92610 (12) 0.0805 (7)
H20 0.7392 0.6419 0.9477 0.097*
C21 0.64027 (19) 0.6518 (2) 0.85425 (11) 0.0640 (5)
H21 0.6892 0.6037 0.8288 0.077*
C22 0.8477 (2) 0.58423 (16) 0.71153 (13) 0.0613 (5)
H22 0.7936 0.5592 0.6758 0.074*
C23 0.9023 (2) 0.51434 (18) 0.75950 (16) 0.0775 (7)
H23 0.8833 0.4434 0.7564 0.093*
C24 0.9841 (3) 0.5492 (2) 0.81139 (19) 0.0896 (8)
H24 1.0202 0.5026 0.8440 0.108*
C25 1.0122 (3) 0.6533 (3) 0.81481 (19) 0.0993 (9)
H25 1.0702 0.6771 0.8489 0.119*
C26 0.9552 (2) 0.7242 (2) 0.76789 (14) 0.0747 (6)
H26 0.9737 0.7951 0.7719 0.090*
C27 0.87162 (15) 0.69031 (15) 0.71554 (10) 0.0503 (4)
C28 0.80645 (16) 0.76837 (14) 0.66683 (10) 0.0488 (4)
H28A 0.7999 0.7390 0.6186 0.059*
H28B 0.8581 0.8310 0.6637 0.059*
C29 0.67331 (14) 0.79849 (12) 0.69335 (8) 0.0400 (3)
H29 0.6811 0.8145 0.7450 0.048*
C30 0.62316 (17) 0.89749 (13) 0.65685 (9) 0.0475 (4)
H30A 0.6233 0.8880 0.6048 0.057*
H30B 0.5365 0.9100 0.6721 0.057*
H3 0.658 (2) 1.023 (2) 0.7087 (16) 0.078 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.1086 (13) 0.1066 (14) 0.0678 (10) 0.0422 (12) 0.0073 (10) 0.0090 (10)
O2 0.1259 (17) 0.139 (2) 0.1075 (16) 0.0540 (16) 0.0522 (14) 0.0077 (15)
O3 0.0666 (7) 0.0394 (6) 0.0426 (6) −0.0080 (5) 0.0105 (5) −0.0074 (5)
N1 0.0531 (7) 0.0423 (7) 0.0309 (6) −0.0089 (6) −0.0013 (5) 0.0044 (5)
N2 0.0465 (6) 0.0352 (6) 0.0327 (6) −0.0033 (5) 0.0020 (5) 0.0004 (5)
N3 0.0920 (12) 0.0620 (10) 0.0621 (11) 0.0134 (10) 0.0226 (9) −0.0047 (9)
C1 0.0784 (12) 0.0682 (12) 0.0464 (9) −0.0281 (11) −0.0132 (9) 0.0115 (9)
C2 0.0859 (15) 0.0888 (17) 0.0722 (14) −0.0435 (14) −0.0203 (12) 0.0142 (13)
C3 0.0934 (16) 0.0622 (12) 0.0735 (14) −0.0236 (12) −0.0397 (13) 0.0008 (11)
C4 0.0942 (14) 0.0472 (10) 0.0472 (10) −0.0038 (10) −0.0249 (10) −0.0031 (8)
C5 0.0724 (11) 0.0451 (9) 0.0437 (9) −0.0043 (8) −0.0091 (8) −0.0001 (7)
C6 0.0598 (9) 0.0357 (7) 0.0394 (8) −0.0048 (7) −0.0119 (7) 0.0042 (6)
C7 0.0541 (8) 0.0361 (7) 0.0317 (7) −0.0021 (7) −0.0034 (6) 0.0030 (6)
C8 0.0513 (7) 0.0361 (7) 0.0307 (7) −0.0014 (6) −0.0013 (6) −0.0003 (6)
C9 0.0524 (8) 0.0475 (8) 0.0328 (7) −0.0097 (7) 0.0019 (6) −0.0037 (6)
C10 0.0671 (10) 0.0579 (10) 0.0361 (8) −0.0133 (8) −0.0060 (7) 0.0053 (7)
C11 0.0982 (16) 0.0879 (16) 0.0363 (9) −0.0388 (14) −0.0085 (10) 0.0109 (10)
C12 0.0977 (16) 0.120 (2) 0.0368 (9) −0.0439 (17) 0.0187 (11) −0.0152 (12)
C13 0.0776 (13) 0.109 (2) 0.0584 (13) −0.0133 (14) 0.0205 (11) −0.0371 (14)
C14 0.0686 (11) 0.0683 (12) 0.0503 (10) 0.0008 (10) 0.0058 (8) −0.0157 (9)
C15 0.0498 (7) 0.0369 (7) 0.0303 (7) −0.0031 (6) 0.0016 (6) 0.0020 (6)
C16 0.0535 (8) 0.0449 (8) 0.0318 (7) −0.0141 (7) 0.0004 (6) 0.0016 (6)
C17 0.0710 (10) 0.0452 (9) 0.0392 (8) −0.0135 (8) 0.0101 (8) −0.0021 (7)
C18 0.1157 (19) 0.0663 (13) 0.0440 (10) −0.0335 (13) 0.0190 (11) −0.0146 (9)
C19 0.1110 (18) 0.0966 (17) 0.0353 (9) −0.0515 (16) −0.0103 (11) −0.0013 (10)
C20 0.0772 (13) 0.116 (2) 0.0484 (11) −0.0226 (15) −0.0201 (10) 0.0130 (12)
C21 0.0619 (10) 0.0845 (14) 0.0454 (10) −0.0018 (10) −0.0052 (8) 0.0060 (10)
C22 0.0624 (10) 0.0464 (10) 0.0753 (13) 0.0054 (8) −0.0049 (9) −0.0101 (9)
C23 0.0761 (13) 0.0500 (11) 0.1064 (19) 0.0169 (10) −0.0039 (13) −0.0032 (12)
C24 0.0769 (14) 0.0825 (17) 0.109 (2) 0.0233 (13) −0.0197 (15) 0.0112 (16)
C25 0.0825 (16) 0.112 (2) 0.103 (2) −0.0033 (16) −0.0421 (16) 0.0016 (19)
C26 0.0761 (13) 0.0663 (13) 0.0817 (14) −0.0173 (11) −0.0171 (12) −0.0039 (12)
C27 0.0423 (7) 0.0479 (9) 0.0606 (10) −0.0009 (7) 0.0054 (7) −0.0082 (8)
C28 0.0497 (8) 0.0442 (8) 0.0524 (9) −0.0062 (7) 0.0083 (7) −0.0017 (7)
C29 0.0486 (7) 0.0362 (7) 0.0351 (7) −0.0058 (6) 0.0032 (6) −0.0021 (6)
C30 0.0582 (9) 0.0385 (8) 0.0460 (8) −0.0051 (7) 0.0000 (7) 0.0009 (7)

Geometric parameters (Å, º)

O1—N3 1.216 (3) C13—C14 1.385 (3)
O2—N3 1.226 (3) C14—H14 0.9300
O3—C30 1.402 (2) C15—C16 1.489 (2)
O3—H3 0.90 (3) C16—C17 1.381 (3)
N1—C7 1.3858 (18) C16—C21 1.385 (3)
N1—C15 1.308 (2) C17—C18 1.389 (3)
N2—C8 1.4009 (19) C18—H18 0.9300
N2—C15 1.3561 (19) C18—C19 1.367 (4)
N2—C29 1.4762 (19) C19—H19 0.9300
N3—C17 1.466 (3) C19—C20 1.355 (4)
C1—H1 0.9300 C20—H20 0.9300
C1—C2 1.386 (3) C20—C21 1.393 (3)
C1—C6 1.388 (3) C21—H21 0.9300
C2—H2 0.9300 C22—H22 0.9300
C2—C3 1.378 (4) C22—C23 1.384 (3)
C3—H3A 0.9300 C22—C27 1.381 (3)
C3—C4 1.363 (4) C23—H23 0.9300
C4—H4 0.9300 C23—C24 1.364 (4)
C4—C5 1.379 (3) C24—H24 0.9300
C5—H5 0.9300 C24—C25 1.364 (4)
C5—C6 1.395 (2) C25—H25 0.9300
C6—C7 1.476 (2) C25—C26 1.390 (4)
C7—C8 1.374 (2) C26—H26 0.9300
C8—C9 1.489 (2) C26—C27 1.379 (3)
C9—C10 1.389 (3) C27—C28 1.509 (3)
C9—C14 1.388 (3) C28—H28A 0.9700
C10—H10 0.9300 C28—H28B 0.9700
C10—C11 1.391 (3) C28—C29 1.536 (2)
C11—H11 0.9300 C29—H29 0.9800
C11—C12 1.365 (4) C29—C30 1.528 (2)
C12—H12 0.9300 C30—H30A 0.9700
C12—C13 1.369 (4) C30—H30B 0.9700
C13—H13 0.9300
C30—O3—H3 109.6 (17) C17—C16—C21 117.09 (16)
C15—N1—C7 106.24 (13) C21—C16—C15 118.52 (16)
C8—N2—C29 128.75 (12) C16—C17—N3 120.76 (16)
C15—N2—C8 106.21 (12) C16—C17—C18 122.0 (2)
C15—N2—C29 124.32 (12) C18—C17—N3 117.27 (19)
O1—N3—O2 123.0 (2) C17—C18—H18 120.2
O1—N3—C17 118.91 (17) C19—C18—C17 119.5 (2)
O2—N3—C17 118.1 (2) C19—C18—H18 120.2
C2—C1—H1 119.7 C18—C19—H19 120.0
C2—C1—C6 120.5 (2) C20—C19—C18 119.94 (19)
C6—C1—H1 119.7 C20—C19—H19 120.0
C1—C2—H2 119.9 C19—C20—H20 119.7
C3—C2—C1 120.3 (2) C19—C20—C21 120.6 (2)
C3—C2—H2 119.9 C21—C20—H20 119.7
C2—C3—H3A 120.1 C16—C21—C20 120.8 (2)
C4—C3—C2 119.8 (2) C16—C21—H21 119.6
C4—C3—H3A 120.1 C20—C21—H21 119.6
C3—C4—H4 119.8 C23—C22—H22 119.2
C3—C4—C5 120.5 (2) C27—C22—H22 119.2
C5—C4—H4 119.8 C27—C22—C23 121.5 (2)
C4—C5—H5 119.6 C22—C23—H23 119.9
C4—C5—C6 120.9 (2) C24—C23—C22 120.2 (2)
C6—C5—H5 119.6 C24—C23—H23 119.9
C1—C6—C5 118.00 (17) C23—C24—H24 120.4
C1—C6—C7 119.63 (16) C25—C24—C23 119.2 (3)
C5—C6—C7 122.25 (17) C25—C24—H24 120.4
N1—C7—C6 120.53 (14) C24—C25—H25 119.6
C8—C7—N1 109.25 (13) C24—C25—C26 120.8 (3)
C8—C7—C6 130.08 (14) C26—C25—H25 119.6
N2—C8—C9 124.21 (14) C25—C26—H26 119.7
C7—C8—N2 105.88 (12) C27—C26—C25 120.6 (2)
C7—C8—C9 129.81 (14) C27—C26—H26 119.7
C10—C9—C8 121.14 (16) C22—C27—C28 122.24 (17)
C14—C9—C8 120.07 (16) C26—C27—C22 117.5 (2)
C14—C9—C10 118.64 (17) C26—C27—C28 120.17 (18)
C9—C10—H10 119.9 C27—C28—H28A 109.0
C9—C10—C11 120.1 (2) C27—C28—H28B 109.0
C11—C10—H10 119.9 C27—C28—C29 113.05 (14)
C10—C11—H11 119.7 H28A—C28—H28B 107.8
C12—C11—C10 120.5 (2) C29—C28—H28A 109.0
C12—C11—H11 119.7 C29—C28—H28B 109.0
C11—C12—H12 120.1 N2—C29—C28 112.95 (12)
C11—C12—C13 119.86 (19) N2—C29—H29 106.6
C13—C12—H12 120.1 N2—C29—C30 110.98 (12)
C12—C13—H13 119.8 C28—C29—H29 106.6
C12—C13—C14 120.5 (2) C30—C29—C28 112.52 (13)
C14—C13—H13 119.8 C30—C29—H29 106.6
C9—C14—H14 119.8 O3—C30—C29 110.62 (14)
C13—C14—C9 120.3 (2) O3—C30—H30A 109.5
C13—C14—H14 119.8 O3—C30—H30B 109.5
N1—C15—N2 112.40 (13) C29—C30—H30A 109.5
N1—C15—C16 124.36 (13) C29—C30—H30B 109.5
N2—C15—C16 123.15 (13) H30A—C30—H30B 108.1
C17—C16—C15 124.36 (16)
O1—N3—C17—C16 −28.9 (3) C10—C9—C14—C13 1.3 (3)
O1—N3—C17—C18 149.6 (2) C10—C11—C12—C13 0.6 (4)
O2—N3—C17—C16 151.3 (2) C11—C12—C13—C14 −1.0 (4)
O2—N3—C17—C18 −30.2 (3) C12—C13—C14—C9 0.0 (4)
N1—C7—C8—N2 −1.39 (18) C14—C9—C10—C11 −1.7 (3)
N1—C7—C8—C9 174.96 (16) C15—N1—C7—C6 −174.64 (14)
N1—C15—C16—C17 −78.5 (2) C15—N1—C7—C8 1.39 (18)
N1—C15—C16—C21 99.5 (2) C15—N2—C8—C7 0.87 (16)
N2—C8—C9—C10 −91.6 (2) C15—N2—C8—C9 −175.75 (15)
N2—C8—C9—C14 92.9 (2) C15—N2—C29—C28 123.81 (16)
N2—C15—C16—C17 105.10 (19) C15—N2—C29—C30 −108.76 (16)
N2—C15—C16—C21 −76.9 (2) C15—C16—C17—N3 −2.0 (2)
N2—C29—C30—O3 168.26 (12) C15—C16—C17—C18 179.64 (17)
N3—C17—C18—C19 −178.64 (19) C15—C16—C21—C20 179.7 (2)
C1—C2—C3—C4 0.2 (4) C16—C17—C18—C19 −0.2 (3)
C1—C6—C7—N1 9.2 (3) C17—C16—C21—C20 −2.2 (3)
C1—C6—C7—C8 −165.92 (19) C17—C18—C19—C20 −0.7 (3)
C2—C1—C6—C5 −1.0 (3) C18—C19—C20—C21 0.1 (4)
C2—C1—C6—C7 175.2 (2) C19—C20—C21—C16 1.4 (4)
C2—C3—C4—C5 −0.5 (4) C21—C16—C17—N3 −179.99 (17)
C3—C4—C5—C6 0.1 (3) C21—C16—C17—C18 1.6 (3)
C4—C5—C6—C1 0.7 (3) C22—C23—C24—C25 −0.7 (5)
C4—C5—C6—C7 −175.39 (17) C22—C27—C28—C29 81.6 (2)
C5—C6—C7—N1 −174.82 (16) C23—C22—C27—C26 1.9 (3)
C5—C6—C7—C8 10.1 (3) C23—C22—C27—C28 −176.0 (2)
C6—C1—C2—C3 0.6 (4) C23—C24—C25—C26 2.3 (5)
C6—C7—C8—N2 174.14 (16) C24—C25—C26—C27 −1.8 (5)
C6—C7—C8—C9 −9.5 (3) C25—C26—C27—C22 −0.3 (4)
C7—N1—C15—N2 −0.83 (18) C25—C26—C27—C28 177.6 (2)
C7—N1—C15—C16 −177.60 (16) C26—C27—C28—C29 −96.2 (2)
C7—C8—C9—C10 92.6 (2) C27—C22—C23—C24 −1.4 (4)
C7—C8—C9—C14 −82.8 (2) C27—C28—C29—N2 −69.13 (18)
C8—N2—C15—N1 −0.02 (18) C27—C28—C29—C30 164.25 (14)
C8—N2—C15—C16 176.79 (15) C28—C29—C30—O3 −64.08 (18)
C8—N2—C29—C28 −67.3 (2) C29—N2—C8—C7 −169.57 (14)
C8—N2—C29—C30 60.1 (2) C29—N2—C8—C9 13.8 (2)
C8—C9—C10—C11 −177.23 (16) C29—N2—C15—N1 170.96 (14)
C8—C9—C14—C13 176.89 (19) C29—N2—C15—C16 −12.2 (2)
C9—C10—C11—C12 0.8 (3)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C9–C14 and C22–C27 rings, respectively.

D—H···A D—H H···A D···A D—H···A
C5—H5···Cg1 0.93 2.84 3.715 (2) 157
C21—H21···Cg2 0.93 2.81 3.501 (2) 132
O3—H3···N1i 0.90 (3) 1.89 (3) 2.7935 (17) 179 (3)

Symmetry code: (i) −x+1, y+1/2, −z+3/2.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: RZ5116).

References

  1. Agilent (2011). CrysAlis PRO. Agilent Technologies UK Ltd, Yarnton, England.
  2. Ding, J., Desikan, V., Han, X., Xiao, T., Ding, R., Jenks, W. & Armstrong, D. (2005). Org. Lett. 7, 7335–337. [DOI] [PubMed]
  3. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  4. Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  5. Gao, J., Wang, H., Yang, L., Xiao, Y. & Mao, P. (2013). Acta Cryst. E69, o1858. [DOI] [PMC free article] [PubMed]
  6. Gao, J., Yang, L., Mai, W., Yuan, J. & Mao, P. (2013). Acta Cryst. E69, o1379. [DOI] [PMC free article] [PubMed]
  7. Heightman, T. D. & Vasella, A. T. (1999). Angew. Chem. Int. Ed. 38, 750–770. [DOI] [PubMed]
  8. Mao, P., Cai, Y., Xiao, Y., Yang, L., Xue, Y. & Song, M. (2010). Phosphorus Sulfur Silicon Relat. Elem. 185, 2418–2425.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Wasserscheid, P. & Keim, W. (2000). Angew. Chem. Int. Ed. 39, 3772–3789. [DOI] [PubMed]
  11. Xiao, Y., Yang, L., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o264. [DOI] [PMC free article] [PubMed]
  12. Yang, L., Xiao, Y., He, K., Yuan, J. & Mao, P. (2012). Acta Cryst. E68, o1670. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S1600536814008770/rz5116sup1.cif

e-70-0o621-sup1.cif (24.8KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814008770/rz5116Isup2.hkl

e-70-0o621-Isup2.hkl (218.5KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814008770/rz5116Isup3.cml

CCDC reference: 997919

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES