Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 2;70(Pt 5):m159. doi: 10.1107/S1600536814006011

Poly[(μ4-decanedio­ato)cobalt(II)]

Bruno Giuseppe a,*, Nicolò Francesco a, Grassi Giovanni a, Saccà Alessandro a, Viviana Mollica Nardo a
PMCID: PMC4011297  PMID: 24860298

Abstract

In the title compound, [Co(C10H16O4)]n, the CoII atom is bonded in a slightly distorted tetra­hedral environment by four O atoms from the bridging sebacate dications, comprising two separate half-ligands which lie across crystallographic inversion centres. In the three-dimensional network coordination polymer, there are two different spatial extensions of CoII atoms, one with the CoII atoms lying parallel to (100) [Co⋯Co = 4.653 (1) Å], the other lying parallel to (010) [Co⋯Co = 4.764 (1) Å].

Related literature  

For background to the construction of supra­molecular frameworks, see: Gavezzotti (1994); Desiraju (2003); Sarma & Desiraju (2002); Biradha et al. (1998); Hosseini (2003). For the structure of sebacic acid, see: Morrison & Robertson (1949); Bond et al. (2001). For its use in constructing stable metal-organic frameworks, see: Borkowski & Cahill (2004, 2006); Thuéry (2008); Zhou et al. (2010).graphic file with name e-70-0m159-scheme1.jpg

Experimental  

Crystal data  

  • [Co(C10H16O4)]

  • M r = 259.16

  • Monoclinic, Inline graphic

  • a = 9.276 (1) Å

  • b = 4.764 (1) Å

  • c = 50.154 (3) Å

  • β = 95.02 (2)°

  • V = 2207.9 (5) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.55 mm−1

  • T = 295 K

  • 0.28 × 0.21 × 0.17 mm

Data collection  

  • Bruker APEXII CCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2004) T min = 0.661, T max = 0.746

  • 32758 measured reflections

  • 2477 independent reflections

  • 2175 reflections with I > 2σ(I)

  • R int = 0.044

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.047

  • wR(F 2) = 0.157

  • S = 1.01

  • 2477 reflections

  • 136 parameters

  • H-atom parameters constrained

  • Δρmax = 0.59 e Å−3

  • Δρmin = −1.13 e Å−3

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814006011/zs2284sup1.cif

e-70-0m159-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006011/zs2284Isup2.hkl

e-70-0m159-Isup2.hkl (119.3KB, hkl)

CCDC reference: 992380

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Selected bond lengths (Å).

Co1—O1 1.968 (3)
Co1—O2 1.953 (3)
Co1—O3i 1.972 (3)
Co1—O4ii 1.963 (3)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

supplementary crystallographic information

1. Comment

Crystal engineering is primarily concerned with the ability to predictably synthesize supramolecular structures from well designed building-blocks (Desiraju, 2003). To date it is still a big challenge the exact prediction of the structure of a molecular solid because crystal packing is driven by many weak non-covalent interactions (Gavezzotti, 1994). Suitable substrates to design specific architectures should bear functional groups apt to develop predefined interactions synthones (Sarma & Desiraju, 2002) for this purpose, often, planar aromatic or linear aliphatic molecules with carboxylic groups (Biradha et al., 1998) were exploited as building-blocks (Hosseini, 2003) to yield particular crystal lattice. Crystal structure of sebacic acid was first determined by Morrison & Robertson (1949) it has been redetermined at low temperature (180 K) (Bond et al., 2001). Sebacic acid both in its protonated or deprotonated forms has been found in several metal complexes, either coordinated to the metal center or as a counter ion, or in co-crystals in its protonated form. In all the examined compounds, the alkyl chain of either the free or coordinated sebacate or sebacic acid are usually linear with a few exceptions (Zhou et al., 2010; Thuéry, 2008). In the title zinc sebacate complex, [CoC10H16O4]n the linear chain is evidenced by the C1–C10 separation of 11.452 (4) Å, equal within the e.s.d's to the corresponding value of 11.466 (5) Å found in the low- temperature X-ray structure of sebacic acid (Bond et al., 2001).The shortest separation [11.419 (4) Å] for the linear C1···C10 chain was found in a dimeric uranil sebacate complex (Borkowski & Cahill, 2006).

The asymmetric unit of the title complex comprises a cobalt cation coordinated by four carboxyl O-atom donors from two non-equivalent half-sebacate anions which lie across crystallographic inversion centres (Fig. 1). The cobalt has close to ideal tetrahedral geometry [Co—O range, 1.953 (3) – 1.972 (3) Å (Table 1)]. The C—O bond lengths in the carboxylate groups range from 1.252 (5) Å to 1.262 (5) Å, this narrow range being smaller than the usual range found in monodentate carboxylates. The title complex forms a three-dimensional network polymer in which there are two different arrangenments of cobalt atoms (Fig. 2). The column of cobalt atoms with the oxygen atoms linked to it extends parallel to the crystallographic b axis and in this column the Co–Co separation is exactly the length of b axis [4.7640 (7) Å]. The second column extends almost parallel to (1 0 0) with a Co···Co separation of 4.6528 (8) Å. The overall molecular packing is illustrated in Fig. 3.

2. Experimental

The polymer was synthesized by reaction of cobalt chloride hexahydrate (0.05 mmol) with sebacic acid (0.05 mmol) sealed in a teflon-lined stainless steel autoclave filled with 8 ml of water, which was heated at 130 °C for 3 days under autogenous pressure. After slow cooling to room temperature over 6 h, two different types of crystal were observed, the expected pink violet product, the title complex (yield 50%) and transparent colourless crystals, which tested separately appear to be unreacted sebacic acid.

3. Refinement

The H atoms were included in the refinement at calculated positions [C—H = 0.97 Å] and were allowed to ride, with Ueq(H) = 1.2Ueq(H).

Figures

Fig. 1.

Fig. 1.

Molecular configuration and atom numbering for the title complex with non H-atoms represented as displacement ellipsoids plotted at the 50% probability level and H atoms shown as small spheres of arbitrary radius. The broken bonds C5—C5iii and C6—C6iv link the inversion-related halves of the sebacate ligands. For symmetry codes (i) and (ii), see Table 1. For other codes: (iii) -x + 3/2, -y - 1/2, -z + 1/2; (iv) -x, -y, -z.

Fig. 2.

Fig. 2.

Perspective view of the three-dimensional network structure, showing the polymeric extensions.

Fig. 3.

Fig. 3.

Packing diagram of the three-dimensional compound viewed along the b axis.

Crystal data

[Co(C10H16O4)] F(000) = 1080
Mr = 259.16 Dx = 1.559 Mg m3
Monoclinic, I2/a Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -I 2ya Cell parameters from 98 reflections
a = 9.276 (1) Å θ = 2.2–27.5°
b = 4.764 (1) Å µ = 1.55 mm1
c = 50.154 (3) Å T = 295 K
β = 95.02 (2)° Prismatic, pink
V = 2207.9 (5) Å3 0.28 × 0.21 × 0.17 mm
Z = 8

Data collection

Bruker APEXII CCD diffractometer 2477 independent reflections
Radiation source: fine-focus sealed tube 2175 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.044
φ and ω scans θmax = 27.5°, θmin = 0.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 2004) h = −12→12
Tmin = 0.661, Tmax = 0.746 k = −6→6
32758 measured reflections l = −65→65

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157 H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0975P)2 + 11.5316P] where P = (Fo2 + 2Fc2)/3
2477 reflections (Δ/σ)max = 0.005
136 parameters Δρmax = 0.59 e Å3
0 restraints Δρmin = −1.13 e Å3

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Structure has been solved and refined in the centrosymmetric monoclinic C2/c space group. Refining the structure in the non standard I2/a space group leads to identical R value results, but at a value of G.o.f. (1.014) significantly closer to the ideal value of 1, for this reason we prefer the non-standard space group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.47978 (6) 0.46111 (10) 0.12353 (1) 0.0250 (2)
O1 0.6900 (3) 0.4833 (6) 0.13284 (6) 0.0309 (8)
O2 0.4577 (4) 0.0653 (6) 0.11391 (6) 0.0366 (9)
O3 0.8963 (3) 0.3988 (7) 0.15584 (6) 0.0323 (8)
O4 0.4116 (3) −0.3222 (6) 0.09159 (6) 0.0325 (8)
C1 0.7614 (4) 0.3735 (8) 0.15271 (7) 0.0257 (10)
C2 0.6850 (4) 0.2035 (10) 0.17252 (8) 0.0354 (11)
C3 0.7826 (5) 0.0818 (10) 0.19561 (9) 0.0376 (14)
C4 0.6969 (5) −0.0629 (11) 0.21590 (10) 0.0405 (14)
C5 0.7919 (5) −0.1789 (11) 0.23957 (9) 0.0418 (14)
C6 0.0421 (5) −0.0875 (10) 0.01058 (9) 0.0363 (12)
C7 0.1253 (5) 0.0870 (9) 0.03230 (8) 0.0354 (12)
C8 0.2129 (4) −0.0888 (9) 0.05305 (8) 0.0331 (11)
C9 0.2964 (5) 0.0920 (9) 0.07393 (8) 0.0323 (12)
C10 0.3946 (4) −0.0612 (7) 0.09434 (8) 0.0246 (10)
H2A 0.63420 0.05040 0.16300 0.0430*
H2B 0.61290 0.32160 0.17980 0.0430*
H3A 0.84870 −0.05180 0.18860 0.0450*
H3B 0.83970 0.23150 0.20440 0.0450*
H4A 0.64190 −0.21550 0.20720 0.0490*
H4B 0.62870 0.06970 0.22240 0.0490*
H5A 0.85920 −0.31300 0.23300 0.0510*
H5B 0.84820 −0.02640 0.24800 0.0510*
H6A 0.10990 −0.20510 0.00200 0.0440*
H6B −0.02450 −0.21000 0.01890 0.0440*
H7A 0.19000 0.21330 0.02400 0.0420*
H7B 0.05720 0.20070 0.04120 0.0420*
H8A 0.28010 −0.20510 0.04420 0.0400*
H8B 0.14830 −0.21190 0.06180 0.0400*
H9A 0.35410 0.22490 0.06480 0.0390*
H9B 0.22750 0.19920 0.08330 0.0390*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0240 (3) 0.0266 (3) 0.0228 (3) 0.0029 (2) −0.0062 (2) −0.0017 (2)
O1 0.0254 (14) 0.0385 (15) 0.0282 (14) 0.0012 (10) −0.0013 (11) 0.0082 (11)
O2 0.0502 (19) 0.0249 (14) 0.0306 (15) 0.0056 (12) −0.0197 (13) −0.0032 (11)
O3 0.0215 (13) 0.0426 (16) 0.0320 (14) 0.0037 (11) −0.0013 (10) −0.0053 (12)
O4 0.0408 (15) 0.0236 (14) 0.0309 (14) 0.0030 (11) −0.0095 (11) 0.0003 (10)
C1 0.0223 (16) 0.0287 (18) 0.0258 (17) 0.0032 (14) −0.0001 (13) −0.0015 (14)
C2 0.0247 (18) 0.047 (2) 0.034 (2) −0.0021 (16) 0.0002 (15) 0.0122 (17)
C3 0.027 (2) 0.051 (3) 0.034 (2) −0.0023 (17) −0.0013 (16) 0.0137 (18)
C4 0.030 (2) 0.056 (3) 0.035 (2) −0.0023 (18) 0.0000 (17) 0.0147 (19)
C5 0.033 (2) 0.055 (3) 0.037 (2) −0.0004 (19) 0.0009 (17) 0.015 (2)
C6 0.031 (2) 0.042 (2) 0.033 (2) 0.0033 (17) −0.0143 (17) 0.0003 (17)
C7 0.032 (2) 0.040 (2) 0.031 (2) 0.0028 (17) −0.0148 (16) 0.0004 (16)
C8 0.0292 (19) 0.033 (2) 0.034 (2) −0.0009 (15) −0.0148 (16) −0.0002 (16)
C9 0.034 (2) 0.030 (2) 0.030 (2) 0.0037 (16) −0.0135 (15) −0.0003 (15)
C10 0.0206 (17) 0.0259 (18) 0.0263 (18) 0.0021 (13) −0.0037 (14) −0.0008 (13)

Geometric parameters (Å, º)

Co1—O1 1.968 (3) C9—C10 1.499 (6)
Co1—O2 1.953 (3) C2—H2A 0.9700
Co1—O3i 1.972 (3) C2—H2B 0.9700
Co1—O4ii 1.963 (3) C3—H3A 0.9700
O1—C1 1.261 (5) C3—H3B 0.9700
O2—C10 1.252 (5) C4—H4A 0.9700
O3—C1 1.253 (5) C4—H4B 0.9700
O4—C10 1.262 (4) C5—H5A 0.9700
C1—C2 1.506 (6) C5—H5B 0.9700
C2—C3 1.521 (6) C6—H6A 0.9700
C3—C4 1.511 (7) C6—H6B 0.9700
C4—C5 1.519 (7) C7—H7A 0.9700
C5—C5iii 1.517 (7) C7—H7B 0.9700
C6—C7 1.525 (6) C8—H8A 0.9700
C6—C6iv 1.512 (7) C8—H8B 0.9700
C7—C8 1.516 (6) C9—H9A 0.9700
C8—C9 1.515 (6) C9—H9B 0.9700
O1—Co1—O2 101.00 (14) C4—C3—H3B 109.00
O1—Co1—O4ii 114.02 (12) H3A—C3—H3B 108.00
O1—Co1—O3i 103.83 (12) C3—C4—H4A 109.00
O2—Co1—O4ii 106.66 (13) C3—C4—H4B 109.00
O2—Co1—O3i 119.31 (14) C5—C4—H4A 109.00
O3i—Co1—O4ii 111.77 (13) C5—C4—H4B 109.00
Co1—O1—C1 127.3 (3) H4A—C4—H4B 108.00
Co1—O2—C10 133.6 (3) C4—C5—H5A 109.00
Co1v—O3—C1 112.9 (2) C4—C5—H5B 109.00
Co1vi—O4—C10 117.6 (3) H5A—C5—H5B 108.00
O1—C1—O3 120.6 (3) C5iii—C5—H5A 109.00
O1—C1—C2 120.0 (3) C5iii—C5—H5B 109.00
O3—C1—C2 119.4 (3) C7—C6—H6A 109.00
C1—C2—C3 115.1 (3) C7—C6—H6B 109.00
C2—C3—C4 111.9 (4) H6A—C6—H6B 108.00
C3—C4—C5 112.9 (4) C6iv—C6—H6A 109.00
C4—C5—C5iii 113.8 (4) C6iv—C6—H6B 109.00
C6iv—C6—C7 113.5 (4) C6—C7—H7A 109.00
C6—C7—C8 113.4 (4) C6—C7—H7B 109.00
C7—C8—C9 111.8 (4) C8—C7—H7A 109.00
C8—C9—C10 116.0 (3) C8—C7—H7B 109.00
O2—C10—O4 120.4 (4) H7A—C7—H7B 108.00
O2—C10—C9 121.0 (3) C7—C8—H8A 109.00
O4—C10—C9 118.6 (3) C7—C8—H8B 109.00
C1—C2—H2A 108.00 C9—C8—H8A 109.00
C1—C2—H2B 108.00 C9—C8—H8B 109.00
C3—C2—H2A 109.00 H8A—C8—H8B 108.00
C3—C2—H2B 109.00 C8—C9—H9A 108.00
H2A—C2—H2B 107.00 C8—C9—H9B 108.00
C2—C3—H3A 109.00 C10—C9—H9A 108.00
C2—C3—H3B 109.00 C10—C9—H9B 108.00
C4—C3—H3A 109.00 H9A—C9—H9B 107.00
O2—Co1—O1—C1 −68.6 (3) Co1v—O3—C1—C2 164.7 (3)
O4ii—Co1—O1—C1 177.4 (3) Co1vi—O4—C10—O2 20.7 (5)
O3i—Co1—O1—C1 55.5 (3) Co1vi—O4—C10—C9 −158.6 (3)
O1—Co1—O2—C10 −130.9 (4) O1—C1—C2—C3 180.0 (4)
O4ii—Co1—O2—C10 −11.5 (4) O3—C1—C2—C3 1.7 (6)
O3i—Co1—O2—C10 116.2 (4) C1—C2—C3—C4 174.8 (4)
O1—Co1—O4ii—C10ii −80.3 (3) C2—C3—C4—C5 −178.3 (4)
O2—Co1—O4ii—C10ii 169.1 (3) C3—C4—C5—C5iii 179.1 (4)
O1—Co1—O3i—C1i 173.9 (3) C4—C5—C5iii—C4iii 180.0 (4)
O2—Co1—O3i—C1i −74.8 (3) C6iv—C6—C7—C8 −178.4 (4)
Co1—O1—C1—O3 178.1 (3) C7—C6—C6iv—C7iv 180.0 (4)
Co1—O1—C1—C2 −0.2 (5) C6—C7—C8—C9 178.8 (4)
Co1—O2—C10—O4 171.7 (3) C7—C8—C9—C10 −176.0 (3)
Co1—O2—C10—C9 −9.0 (6) C8—C9—C10—O2 −173.1 (4)
Co1v—O3—C1—O1 −13.6 (5) C8—C9—C10—O4 6.2 (5)

Symmetry codes: (i) x−1/2, −y+1, z; (ii) x, y+1, z; (iii) −x+3/2, −y−1/2, −z+1/2; (iv) −x, −y, −z; (v) x+1/2, −y+1, z; (vi) x, y−1, z.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: ZS2284).

References

  1. Biradha, K., Dennis, D., MacKinnon, V. A., Sharma, C. V. K. & Zaworotko, M. J. (1998). J. Am. Chem. Soc. 120, 11894–11903.
  2. Bond, A. D., Edwards, M. R. & Jones, W. (2001). Acta Cryst. E57, o141–o142.
  3. Borkowski, L. A. & Cahill, C. L. (2004). Acta Cryst. C60, m159–m161. [DOI] [PubMed]
  4. Borkowski, L. A. & Cahill, C. L. (2006). Cryst. Growth Des. 10, 2241–2247.
  5. Bruker (2009). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Desiraju, G. R. (2003). J. Mol. Struct. 656, 5–15.
  7. Gavezzotti, A. (1994). Acc. Chem. Res. 27, 309–314.
  8. Hosseini, M. W. (2003). Coord. Chem. Rev. 240, 157–166.
  9. Morrison, J. D. & Robertson, J. M. (1949). J. Chem. Soc., pp. 993–1001.
  10. Sarma, J. A. R. P. & Desiraju, G. R. (2002). Cryst. Growth Des. 2, 93–100.
  11. Sheldrick, G. M. (2004). SADABS University of Göttingen, Germany.
  12. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  13. Thuéry, P. (2008). Cryst. Growth Des. 11, 4132–4143.
  14. Zhou, Y.-L., Liang, H. & Zeng, M.-H. (2010). Acta Cryst. E66, m405. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, New_Global_Publ_Block. DOI: 10.1107/S1600536814006011/zs2284sup1.cif

e-70-0m159-sup1.cif (17.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814006011/zs2284Isup2.hkl

e-70-0m159-Isup2.hkl (119.3KB, hkl)

CCDC reference: 992380

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES