Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Apr 9;70(Pt 5):o526. doi: 10.1107/S1600536814007351

(1R,4R,6S,7R)-5,5-Di­bromo-1,4,8,8-tetra­methyl­tri­cyclo­[5.4.1.04,6]dodecan-12-one

Mohamed Zaki a,*, Ahmed Benharref a, Jean-Claude Daran b, Moha Berraho a
PMCID: PMC4011314  PMID: 24860339

Abstract

The title compound, C16H24Br2O, was synthesized from the reaction of β-himachalene (3,5,5,9-tetra­methyl-2,4a,5,6,7,8-hexa­hydro-1H-benzo­cyclo­heptene), which was isolated from Atlas cedar (Cedrus atlantica). The asymmetric unit contains two independent mol­ecules with similar conformations. Each mol­ecule is built up from two fused seven-membered rings and an additional three-membered ring. In both mol­ecules, one of the seven-membered rings has a chair conformation, whereas the other displays a screw-boat conformation.

Related literature  

For background to β-himachalene, see: El Haib et al. (2011). For the reactivity of this sesquiterpene and its derivatives, see: El Jamili et al. (2002); Benharref et al. (2013); Oukhrib et al. (2013). For their potential anti­fungal activity against the phytopathogen Botrytis cinerea, see: Daoubi et al. (2004). For puckering parameters, see: Cremer & Pople (1975). graphic file with name e-70-0o526-scheme1.jpg

Experimental  

Crystal data  

  • C16H24Br2O

  • M r = 392.17

  • Triclinic, Inline graphic

  • a = 6.6550 (3) Å

  • b = 9.4142 (4) Å

  • c = 12.9389 (13) Å

  • α = 86.008 (6)°

  • β = 83.921 (6)°

  • γ = 89.511 (4)°

  • V = 804.13 (9) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 5.03 mm−1

  • T = 173 K

  • 0.38 × 0.11 × 0.10 mm

Data collection  

  • Agilent Xcalibur (Eos, Gemini ultra) diffractometer

  • Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) T min = 0.670, T max = 1.00

  • 11451 measured reflections

  • 6327 independent reflections

  • 5209 reflections with I > 2σ(I)

  • R int = 0.057

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.054

  • wR(F 2) = 0.119

  • S = 1.01

  • 6327 reflections

  • 351 parameters

  • 3 restraints

  • H-atom parameters constrained

  • Δρmax = 0.77 e Å−3

  • Δρmin = −0.62 e Å−3

  • Absolute structure: Flack & Bernardinelli (2000), 3035 Friedel pairs

  • Absolute structure parameter: −0.017 (15)

Data collection: CrysAlis PRO (Agilent, 2012); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007351/bt6972sup1.cif

e-70-0o526-sup1.cif (35.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007351/bt6972Isup2.hkl

e-70-0o526-Isup2.hkl (303.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007351/bt6972Isup3.cml

CCDC reference: 995040

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements

supplementary crystallographic information

1. Comment

Our work lies within the framework of the valorization of the most abundant essential oils in Morocco, such as the one from Cedrus atlantica. This oil is made up mainly (75%) of bicyclic sesquiterpenes hydrocarbons, among which is found β-himachalene (El Haib et al., 2011). The reactivity of this sesquiterpene and its derivatives has been studied extensively by our team in order to prepare new products having biological properties (El Jamili et al., 2002; Benharref et al., 2013; Oukhrib et al., 2013). Indeed, these compounds were tested, using the food poisoning technique, for their potential antifungal activity against phytopathogen Botrytis cinerea (Daoubi et al., 2004). In this work we present the crystal structure of the title compound. The asymmetric unit contains two independent molecules with almost identical conformations (Fig. 1). Each molecule is built up from two fused seven-membered rings, one having a chair conformation as indicated by the total puckering amplitude QT = 0.8469 (8) Å and spherical polar angle θ = 38.29 (6)° with φ2 = 126.14 (8)°, and φ3 = -139.18 (6)°, while the other shows a screw boat conformation, with QT = 1.0407 (8) Å, θ = 76.80 (4)°, φ2 = 153.32 (4)° and φ3 = 115.21 (2)° (Cremer & Pople, 1975). Owing to the presence of Br atoms, the absolute configuration could be fully confirmed, by refining the Flack parameter (Flack & Bernardinelli, 2000) as C1(R), C4(R), C6(S) and C7(R).

2. Experimental

To obtain the title compound, BF3—Et2O(1 mL) was added dropwise to a solution of (1S,2R,7R,8S,10R)-9,9-dibromo- 1α,2α-epoxy-2,6,6,10-tetramethyltricyclo[5.5.0.08,10]dodecane (1 g, 2.5 mmol) in 60 ml of dichloromethane at 195 K under nitrogen. The reaction mixture was stirred for two hours at a constant temperature of 195 K and left at ambient temperature for 24 h. Water (60 ml) was added in order to separate the two phases, and the organic phase was dried and concentrated. The residue obtained was chromatographed on silica-gel eluting with hexane-ethyl acetate (98/2), which allowed the isolation of pure(1S,6R,7S,9R)-12-acetyl-8,8-dibromo-5,5,9- trimethyltricyclo[4.4.0,17,9]decane in a yield of 20% (196 mg, 0.5 mmol). The title compound was recrystallized from its pentane solution.

3. Refinement

All H atoms were fixed geometrically and treated as riding with C—H = 0.96 Å (methyl), 0.97 Å (methylene), 0.98 Å (methine) with Uiso(H) = 1.2Ueq(methylene, methine) or Uiso(H) = 1.5Ueq(methyl). The methyl groups were allowed to rotate but not to tip.

Figures

Fig. 1.

Fig. 1.

: Molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability. level. H atoms are represented as small spheres of arbitrary radii.

Crystal data

C16H24Br2O Z = 2
Mr = 392.17 F(000) = 396
Triclinic, P1 Dx = 1.620 Mg m3
Hall symbol: P 1 Mo Kα radiation, λ = 0.71073 Å
a = 6.6550 (3) Å Cell parameters from 2828 reflections
b = 9.4142 (4) Å θ = 3.7–26.6°
c = 12.9389 (13) Å µ = 5.03 mm1
α = 86.008 (6)° T = 173 K
β = 83.921 (6)° Needle, colourless
γ = 89.511 (4)° 0.38 × 0.11 × 0.10 mm
V = 804.13 (9) Å3

Data collection

Agilent Xcalibur (Eos, Gemini ultra) diffractometer 6327 independent reflections
Radiation source: fine-focus sealed tube 5209 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.057
Detector resolution: 16.1978 pixels mm-1 θmax = 26.4°, θmin = 3.2°
ω scans h = −8→8
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2012) k = −11→11
Tmin = 0.670, Tmax = 1.00 l = −16→16
11451 measured reflections

Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054 H-atom parameters constrained
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0447P)2] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
6327 reflections Δρmax = 0.77 e Å3
351 parameters Δρmin = −0.62 e Å3
3 restraints Absolute structure: Flack & Bernardinelli (2000), 3035 Friedel pairs
Primary atom site location: structure-invariant direct methods Absolute structure parameter: −0.017 (15)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.5880 (12) −0.1550 (8) 1.2375 (6) 0.0276 (18)
C2 0.5505 (13) −0.0914 (9) 1.3464 (6) 0.034 (2)
H2A 0.4417 −0.1471 1.3886 0.040*
H2B 0.6748 −0.1053 1.3818 0.040*
C3 0.4926 (12) 0.0666 (9) 1.3462 (7) 0.028 (2)
H3A 0.4717 0.0941 1.4191 0.034*
H3B 0.6059 0.1241 1.3098 0.034*
C4 0.3007 (11) 0.1013 (8) 1.2934 (6) 0.0252 (18)
C5 0.2942 (11) 0.2374 (8) 1.2238 (6) 0.0225 (17)
C6 0.3148 (11) 0.0978 (7) 1.1734 (6) 0.0191 (17)
H6 0.1873 0.0660 1.1475 0.023*
C7 0.5057 (11) 0.0591 (8) 1.1050 (6) 0.0226 (17)
H7 0.5764 0.1510 1.0817 0.027*
C8 0.4504 (11) −0.0078 (8) 1.0021 (6) 0.0275 (18)
C9 0.3174 (14) −0.1435 (8) 1.0270 (7) 0.033 (2)
H9A 0.1841 −0.1137 1.0599 0.039*
H9B 0.2948 −0.1823 0.9600 0.039*
C10 0.3944 (13) −0.2635 (8) 1.0963 (7) 0.032 (2)
H10A 0.5336 −0.2882 1.0683 0.039*
H10B 0.3086 −0.3484 1.0942 0.039*
C11 0.3955 (12) −0.2268 (8) 1.2106 (6) 0.0281 (19)
H11A 0.2794 −0.1633 1.2280 0.034*
H11B 0.3738 −0.3158 1.2557 0.034*
C12 0.6585 (11) −0.0347 (8) 1.1572 (6) 0.0221 (17)
C13 0.7592 (14) −0.2668 (10) 1.2418 (8) 0.039 (2)
H13A 0.7752 −0.3149 1.1767 0.059*
H13B 0.7249 −0.3370 1.3004 0.059*
H13C 0.8859 −0.2193 1.2510 0.059*
C14 0.6448 (14) −0.0429 (10) 0.9350 (6) 0.037 (2)
H14A 0.6112 −0.0806 0.8703 0.056*
H14B 0.7220 −0.1143 0.9732 0.056*
H14C 0.7259 0.0437 0.9186 0.056*
C15 0.3312 (14) 0.1068 (9) 0.9411 (6) 0.031 (2)
H15A 0.3025 0.0710 0.8748 0.046*
H15B 0.4121 0.1939 0.9274 0.046*
H15C 0.2038 0.1277 0.9825 0.046*
C16 0.1080 (12) 0.0472 (9) 1.3566 (7) 0.037 (2)
H16A 0.0519 0.1213 1.4010 0.055*
H16B 0.1382 −0.0379 1.4004 0.055*
H16C 0.0094 0.0233 1.3094 0.055*
O1 0.8370 (8) −0.0058 (6) 1.1385 (5) 0.0370 (15)
Br1 0.51009 (11) 0.37150 (8) 1.21049 (7) 0.0329 (3)
Br2 0.04085 (11) 0.33708 (9) 1.21682 (7) 0.0376 (3)
C1A 0.2236 (11) 0.6190 (8) 0.6230 (6) 0.0250 (17)
C2A 0.2439 (12) 0.5548 (8) 0.5146 (6) 0.0284 (19)
H2C 0.1584 0.6115 0.4690 0.034*
H2D 0.3858 0.5664 0.4836 0.034*
C3A 0.1869 (11) 0.3985 (9) 0.5135 (7) 0.024 (2)
H3C 0.2845 0.3398 0.5505 0.029*
H3D 0.1994 0.3720 0.4403 0.029*
C4A −0.0271 (11) 0.3624 (8) 0.5636 (6) 0.0237 (17)
C5A −0.0676 (11) 0.2274 (8) 0.6295 (6) 0.0208 (17)
C6A −0.0769 (11) 0.3672 (7) 0.6818 (6) 0.0193 (16)
H6A1 −0.2177 0.3998 0.7029 0.023*
C7A 0.0724 (11) 0.4048 (7) 0.7548 (6) 0.0208 (16)
H7A1 0.1292 0.3125 0.7819 0.025*
C8A −0.0317 (11) 0.4772 (7) 0.8529 (5) 0.0233 (17)
C9A −0.1548 (13) 0.6092 (8) 0.8239 (6) 0.027 (2)
H9A1 −0.2120 0.6492 0.8895 0.032*
H9A2 −0.2699 0.5776 0.7887 0.032*
C10A −0.0473 (13) 0.7314 (8) 0.7539 (6) 0.034 (2)
H10C −0.1388 0.8148 0.7518 0.040*
H10D 0.0745 0.7597 0.7852 0.040*
C11A 0.0146 (11) 0.6919 (8) 0.6438 (6) 0.0258 (18)
H11C 0.0137 0.7796 0.5969 0.031*
H11D −0.0896 0.6275 0.6240 0.031*
C12A 0.2523 (11) 0.4925 (7) 0.7042 (6) 0.0237 (17)
C13A 0.3950 (13) 0.7266 (9) 0.6268 (7) 0.035 (2)
H13D 0.3753 0.8098 0.5791 0.053*
H13E 0.5252 0.6818 0.6059 0.053*
H13F 0.3939 0.7566 0.6979 0.053*
C14A −0.1763 (13) 0.3701 (8) 0.9151 (7) 0.032 (2)
H14D −0.2433 0.4139 0.9761 0.049*
H14E −0.1004 0.2861 0.9378 0.049*
H14F −0.2782 0.3416 0.8711 0.049*
C15A 0.1302 (13) 0.5154 (8) 0.9242 (6) 0.0308 (19)
H15D 0.2236 0.5859 0.8868 0.046*
H15E 0.2053 0.4294 0.9437 0.046*
H15F 0.0639 0.5550 0.9871 0.046*
C16A −0.1904 (12) 0.4126 (9) 0.4946 (7) 0.036 (2)
H16D −0.1881 0.3525 0.4356 0.054*
H16E −0.1646 0.5117 0.4687 0.054*
H16F −0.3231 0.4056 0.5354 0.054*
O2 0.4216 (8) 0.4614 (6) 0.7244 (5) 0.0338 (14)
Br3 0.14860 (10) 0.09484 (7) 0.65374 (6) 0.0290 (2)
Br4 −0.31319 (12) 0.12276 (9) 0.62628 (7) 0.0378 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.029 (5) 0.015 (4) 0.039 (5) 0.006 (3) −0.006 (4) −0.002 (3)
C2 0.032 (5) 0.042 (5) 0.027 (5) 0.003 (4) −0.011 (4) 0.003 (4)
C3 0.028 (5) 0.038 (6) 0.021 (5) 0.002 (4) −0.012 (4) −0.006 (4)
C4 0.020 (4) 0.028 (4) 0.027 (4) 0.000 (3) −0.003 (3) 0.005 (3)
C5 0.014 (4) 0.030 (4) 0.022 (4) 0.011 (3) 0.002 (3) −0.002 (3)
C6 0.018 (4) 0.019 (4) 0.022 (4) 0.002 (3) −0.008 (3) −0.001 (3)
C7 0.020 (4) 0.021 (4) 0.025 (4) 0.005 (3) 0.004 (3) −0.003 (3)
C8 0.030 (5) 0.027 (4) 0.025 (5) 0.008 (3) 0.002 (4) −0.002 (3)
C9 0.029 (5) 0.030 (5) 0.042 (6) −0.008 (4) −0.015 (4) −0.007 (4)
C10 0.036 (5) 0.021 (4) 0.041 (5) 0.005 (3) −0.013 (4) −0.004 (4)
C11 0.030 (4) 0.023 (5) 0.031 (5) 0.000 (3) −0.004 (4) 0.004 (4)
C12 0.019 (4) 0.021 (4) 0.027 (4) 0.001 (3) −0.003 (3) −0.009 (3)
C13 0.040 (6) 0.037 (5) 0.043 (6) 0.006 (4) −0.018 (5) 0.006 (4)
C14 0.048 (6) 0.046 (6) 0.018 (5) 0.012 (4) 0.003 (4) −0.007 (4)
C15 0.044 (6) 0.034 (5) 0.017 (4) 0.015 (4) −0.012 (4) −0.009 (4)
C16 0.024 (5) 0.050 (6) 0.034 (5) −0.008 (4) 0.007 (4) −0.003 (4)
O1 0.017 (3) 0.034 (3) 0.059 (4) 0.005 (2) −0.001 (3) 0.000 (3)
Br1 0.0291 (5) 0.0234 (5) 0.0468 (6) 0.0026 (3) −0.0041 (4) −0.0068 (4)
Br2 0.0272 (5) 0.0480 (6) 0.0380 (6) 0.0191 (4) −0.0027 (4) −0.0084 (5)
C1A 0.017 (4) 0.031 (4) 0.024 (4) 0.000 (3) 0.005 (3) 0.000 (3)
C2A 0.028 (4) 0.028 (4) 0.026 (5) 0.006 (3) 0.010 (4) 0.001 (3)
C3A 0.020 (4) 0.024 (5) 0.027 (5) 0.001 (3) 0.005 (4) −0.003 (4)
C4A 0.015 (4) 0.022 (4) 0.035 (5) 0.000 (3) −0.004 (3) 0.000 (3)
C5A 0.018 (4) 0.029 (4) 0.016 (4) −0.002 (3) −0.001 (3) −0.006 (3)
C6A 0.018 (4) 0.014 (4) 0.024 (4) 0.005 (3) 0.004 (3) 0.002 (3)
C7A 0.024 (4) 0.016 (4) 0.023 (4) 0.004 (3) −0.003 (3) −0.006 (3)
C8A 0.034 (5) 0.023 (4) 0.013 (4) 0.003 (3) −0.003 (3) −0.002 (3)
C9A 0.021 (4) 0.030 (4) 0.027 (5) 0.008 (3) 0.011 (4) −0.004 (4)
C10A 0.038 (5) 0.017 (4) 0.043 (5) 0.013 (3) 0.009 (4) 0.001 (4)
C11A 0.024 (4) 0.012 (4) 0.039 (5) 0.004 (3) 0.002 (4) 0.003 (3)
C12A 0.021 (4) 0.018 (4) 0.031 (5) 0.004 (3) 0.002 (3) −0.006 (3)
C13A 0.034 (5) 0.026 (5) 0.045 (6) −0.004 (4) 0.003 (4) −0.001 (4)
C14A 0.029 (5) 0.024 (4) 0.041 (5) 0.005 (4) 0.006 (4) 0.004 (4)
C15A 0.045 (5) 0.024 (4) 0.025 (5) 0.003 (4) −0.010 (4) −0.005 (3)
C16A 0.027 (5) 0.051 (6) 0.030 (5) 0.002 (4) −0.006 (4) −0.003 (4)
O2 0.016 (3) 0.035 (3) 0.050 (4) 0.001 (2) −0.003 (3) −0.001 (3)
Br3 0.0281 (5) 0.0210 (5) 0.0387 (6) 0.0047 (3) −0.0057 (4) −0.0052 (4)
Br4 0.0263 (5) 0.0444 (6) 0.0443 (6) −0.0121 (4) −0.0082 (4) −0.0074 (5)

Geometric parameters (Å, º)

C1—C12 1.525 (11) C1A—C13A 1.539 (11)
C1—C11 1.537 (11) C1A—C11A 1.552 (10)
C1—C13 1.547 (11) C1A—C12A 1.557 (10)
C1—C2 1.564 (11) C1A—C2A 1.557 (11)
C2—C3 1.534 (12) C2A—C3A 1.524 (11)
C2—H2A 0.9900 C2A—H2C 0.9900
C2—H2B 0.9900 C2A—H2D 0.9900
C3—C4 1.534 (10) C3A—C4A 1.532 (9)
C3—H3A 0.9900 C3A—H3C 0.9900
C3—H3B 0.9900 C3A—H3D 0.9900
C4—C5 1.517 (10) C4A—C5A 1.490 (10)
C4—C16 1.519 (10) C4A—C16A 1.529 (11)
C4—C6 1.548 (10) C4A—C6A 1.534 (10)
C5—C6 1.506 (11) C5A—C6A 1.518 (10)
C5—Br1 1.907 (8) C5A—Br4 1.921 (7)
C5—Br2 1.930 (7) C5A—Br3 1.933 (8)
C6—C7 1.527 (9) C6A—C7A 1.503 (10)
C6—H6 1.0000 C6A—H6A1 1.0000
C7—C12 1.522 (10) C7A—C12A 1.523 (10)
C7—C8 1.591 (10) C7A—C8A 1.575 (10)
C7—H7 1.0000 C7A—H7A1 1.0000
C8—C14 1.526 (10) C8A—C14A 1.526 (10)
C8—C15 1.555 (10) C8A—C9A 1.530 (10)
C8—C9 1.556 (11) C8A—C15A 1.551 (10)
C9—C10 1.513 (11) C9A—C10A 1.545 (11)
C9—H9A 0.9900 C9A—H9A1 0.9900
C9—H9B 0.9900 C9A—H9A2 0.9900
C10—C11 1.542 (11) C10A—C11A 1.512 (11)
C10—H10A 0.9900 C10A—H10C 0.9900
C10—H10B 0.9900 C10A—H10D 0.9900
C11—H11A 0.9900 C11A—H11C 0.9900
C11—H11B 0.9900 C11A—H11D 0.9900
C12—O1 1.217 (9) C12A—O2 1.212 (9)
C13—H13A 0.9800 C13A—H13D 0.9800
C13—H13B 0.9800 C13A—H13E 0.9800
C13—H13C 0.9800 C13A—H13F 0.9800
C14—H14A 0.9800 C14A—H14D 0.9800
C14—H14B 0.9800 C14A—H14E 0.9800
C14—H14C 0.9800 C14A—H14F 0.9800
C15—H15A 0.9800 C15A—H15D 0.9800
C15—H15B 0.9800 C15A—H15E 0.9800
C15—H15C 0.9800 C15A—H15F 0.9800
C16—H16A 0.9800 C16A—H16D 0.9800
C16—H16B 0.9800 C16A—H16E 0.9800
C16—H16C 0.9800 C16A—H16F 0.9800
C12—C1—C11 111.9 (7) C13A—C1A—C11A 110.5 (7)
C12—C1—C13 108.5 (7) C13A—C1A—C12A 108.2 (7)
C11—C1—C13 109.4 (6) C11A—C1A—C12A 112.0 (6)
C12—C1—C2 108.1 (6) C13A—C1A—C2A 109.6 (6)
C11—C1—C2 110.6 (7) C11A—C1A—C2A 110.4 (7)
C13—C1—C2 108.3 (7) C12A—C1A—C2A 106.0 (6)
C3—C2—C1 116.4 (7) C3A—C2A—C1A 116.6 (6)
C3—C2—H2A 108.2 C3A—C2A—H2C 108.2
C1—C2—H2A 108.2 C1A—C2A—H2C 108.2
C3—C2—H2B 108.2 C3A—C2A—H2D 108.2
C1—C2—H2B 108.2 C1A—C2A—H2D 108.2
H2A—C2—H2B 107.3 H2C—C2A—H2D 107.3
C4—C3—C2 113.0 (7) C2A—C3A—C4A 114.3 (6)
C4—C3—H3A 109.0 C2A—C3A—H3C 108.7
C2—C3—H3A 109.0 C4A—C3A—H3C 108.7
C4—C3—H3B 109.0 C2A—C3A—H3D 108.7
C2—C3—H3B 109.0 C4A—C3A—H3D 108.7
H3A—C3—H3B 107.8 H3C—C3A—H3D 107.6
C5—C4—C16 119.2 (7) C5A—C4A—C16A 116.7 (6)
C5—C4—C3 118.8 (6) C5A—C4A—C3A 120.5 (6)
C16—C4—C3 113.7 (7) C16A—C4A—C3A 112.8 (7)
C5—C4—C6 58.9 (5) C5A—C4A—C6A 60.2 (5)
C16—C4—C6 118.0 (7) C16A—C4A—C6A 117.5 (7)
C3—C4—C6 117.7 (7) C3A—C4A—C6A 119.6 (6)
C6—C5—C4 61.6 (5) C4A—C5A—C6A 61.3 (5)
C6—C5—Br1 121.7 (5) C4A—C5A—Br4 121.0 (5)
C4—C5—Br1 121.1 (5) C6A—C5A—Br4 118.9 (5)
C6—C5—Br2 116.7 (6) C4A—C5A—Br3 120.7 (5)
C4—C5—Br2 119.3 (5) C6A—C5A—Br3 119.2 (5)
Br1—C5—Br2 109.6 (4) Br4—C5A—Br3 109.0 (3)
C5—C6—C7 121.8 (7) C7A—C6A—C5A 122.4 (6)
C5—C6—C4 59.5 (5) C7A—C6A—C4A 124.3 (6)
C7—C6—C4 124.2 (6) C5A—C6A—C4A 58.5 (5)
C5—C6—H6 113.6 C7A—C6A—H6A1 113.6
C7—C6—H6 113.6 C5A—C6A—H6A1 113.6
C4—C6—H6 113.6 C4A—C6A—H6A1 113.6
C12—C7—C6 116.5 (6) C6A—C7A—C12A 114.9 (6)
C12—C7—C8 110.2 (6) C6A—C7A—C8A 112.2 (6)
C6—C7—C8 110.8 (6) C12A—C7A—C8A 110.7 (6)
C12—C7—H7 106.2 C6A—C7A—H7A1 106.1
C6—C7—H7 106.2 C12A—C7A—H7A1 106.1
C8—C7—H7 106.2 C8A—C7A—H7A1 106.1
C14—C8—C15 108.8 (7) C14A—C8A—C9A 107.6 (6)
C14—C8—C9 110.2 (7) C14A—C8A—C15A 107.6 (6)
C15—C8—C9 109.0 (7) C9A—C8A—C15A 110.3 (6)
C14—C8—C7 109.3 (6) C14A—C8A—C7A 108.5 (6)
C15—C8—C7 107.4 (6) C9A—C8A—C7A 112.9 (6)
C9—C8—C7 112.0 (6) C15A—C8A—C7A 109.7 (6)
C10—C9—C8 118.1 (7) C8A—C9A—C10A 118.4 (7)
C10—C9—H9A 107.8 C8A—C9A—H9A1 107.7
C8—C9—H9A 107.8 C10A—C9A—H9A1 107.7
C10—C9—H9B 107.8 C8A—C9A—H9A2 107.7
C8—C9—H9B 107.8 C10A—C9A—H9A2 107.7
H9A—C9—H9B 107.1 H9A1—C9A—H9A2 107.1
C9—C10—C11 113.4 (7) C11A—C10A—C9A 113.2 (7)
C9—C10—H10A 108.9 C11A—C10A—H10C 108.9
C11—C10—H10A 108.9 C9A—C10A—H10C 108.9
C9—C10—H10B 108.9 C11A—C10A—H10D 108.9
C11—C10—H10B 108.9 C9A—C10A—H10D 108.9
H10A—C10—H10B 107.7 H10C—C10A—H10D 107.7
C1—C11—C10 116.0 (7) C10A—C11A—C1A 116.8 (7)
C1—C11—H11A 108.3 C10A—C11A—H11C 108.1
C10—C11—H11A 108.3 C1A—C11A—H11C 108.1
C1—C11—H11B 108.3 C10A—C11A—H11D 108.1
C10—C11—H11B 108.3 C1A—C11A—H11D 108.1
H11A—C11—H11B 107.4 H11C—C11A—H11D 107.3
O1—C12—C7 118.5 (7) O2—C12A—C7A 120.0 (7)
O1—C12—C1 120.7 (7) O2—C12A—C1A 119.0 (7)
C7—C12—C1 120.6 (6) C7A—C12A—C1A 121.0 (6)
C1—C13—H13A 109.5 C1A—C13A—H13D 109.5
C1—C13—H13B 109.5 C1A—C13A—H13E 109.5
H13A—C13—H13B 109.5 H13D—C13A—H13E 109.5
C1—C13—H13C 109.5 C1A—C13A—H13F 109.5
H13A—C13—H13C 109.5 H13D—C13A—H13F 109.5
H13B—C13—H13C 109.5 H13E—C13A—H13F 109.5
C8—C14—H14A 109.5 C8A—C14A—H14D 109.5
C8—C14—H14B 109.5 C8A—C14A—H14E 109.5
H14A—C14—H14B 109.5 H14D—C14A—H14E 109.5
C8—C14—H14C 109.5 C8A—C14A—H14F 109.5
H14A—C14—H14C 109.5 H14D—C14A—H14F 109.5
H14B—C14—H14C 109.5 H14E—C14A—H14F 109.5
C8—C15—H15A 109.5 C8A—C15A—H15D 109.5
C8—C15—H15B 109.5 C8A—C15A—H15E 109.5
H15A—C15—H15B 109.5 H15D—C15A—H15E 109.5
C8—C15—H15C 109.5 C8A—C15A—H15F 109.5
H15A—C15—H15C 109.5 H15D—C15A—H15F 109.5
H15B—C15—H15C 109.5 H15E—C15A—H15F 109.5
C4—C16—H16A 109.5 C4A—C16A—H16D 109.5
C4—C16—H16B 109.5 C4A—C16A—H16E 109.5
H16A—C16—H16B 109.5 H16D—C16A—H16E 109.5
C4—C16—H16C 109.5 C4A—C16A—H16F 109.5
H16A—C16—H16C 109.5 H16D—C16A—H16F 109.5
H16B—C16—H16C 109.5 H16E—C16A—H16F 109.5

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BT6972).

References

  1. Agilent (2012). CrysAlis PRO . Agilent Technologies Ltd, Yarnton, England.
  2. Benharref, A., Ourhriss, N., El Ammari, L., Saadi, M. & Berraho, M. (2013). Acta Cryst. E69, o933–o934. [DOI] [PMC free article] [PubMed]
  3. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
  4. Daoubi, M., Duran-Patron, R., Hmamouchi, M., Hernandez-Galan, R., Benharref, A. & Isidro, G. C. (2004). Pest Manag. Sci. 60, 927–932. [DOI] [PubMed]
  5. El Haib, A., Benharref, A., Parrès-Maynadié, S., Manoury, E., Urrutigoïty, M. & Gouygou, M. (2011). Tetrahedron Asymmetry, 22, 101–108.
  6. El Jamili, H., Auhmani, A., Dakir, M., Lassaba, E., Benharref, A., Pierrot, M., Chiaroni, A. & Riche, C. (2002). Tetrahedron Lett. 43, 6645–6648.
  7. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  8. Flack, H. D. & Bernardinelli, G. (2000). J. Appl. Cryst. 33, 1143–1148.
  9. Oukhrib, A., Benharref, A., Saadi, M., Berraho, M. & El Ammari, L. (2013). Acta Cryst. E69, o521–o522. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S1600536814007351/bt6972sup1.cif

e-70-0o526-sup1.cif (35.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814007351/bt6972Isup2.hkl

e-70-0o526-Isup2.hkl (303.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814007351/bt6972Isup3.cml

CCDC reference: 995040

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES