Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1989 Aug;8(8):2203–2207. doi: 10.1002/j.1460-2075.1989.tb08343.x

Expression of MyoD1 coincides with terminal differentiation in determined but inducible muscle cells.

D Montarras 1, C Pinset 1, J Chelly 1, A Kahn 1, F Gros 1
PMCID: PMC401148  PMID: 2551676

Abstract

We have examined the expression of MyoD1, a potential determination factor of myogenic cells, in permissive and inducible C2 myoblasts. These two types of myoblasts exhibit distinct requirements to undergo terminal differentiation. Unlike permissive cells, inducible cells fail to differentiate in the presence of growth medium plus fetal calf serum and require insulin to undergo terminal differentiation. We show that while expression of MyoD1 is constitutive in permissive cells, no trace of MyoD1 transcripts is found in inducible cells at the myoblast stage. In these cells, however, expression of MyoD1 accompanies differentiation. This indicates that MyoD1 may not be required for the maintenance of the myoblast phenotype, and could act as an effector of terminal differentiation in already determined muscle cells. Our results provide new evidence that permissive and inducible cells represent two distinct stages of the progression of determined muscle cells toward terminal differentiation.

Full text

PDF
2203

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Braun T., Buschhausen-Denker G., Bober E., Tannich E., Arnold H. H. A novel human muscle factor related to but distinct from MyoD1 induces myogenic conversion in 10T1/2 fibroblasts. EMBO J. 1989 Mar;8(3):701–709. doi: 10.1002/j.1460-2075.1989.tb03429.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Chelly J., Kaplan J. C., Maire P., Gautron S., Kahn A. Transcription of the dystrophin gene in human muscle and non-muscle tissue. Nature. 1988 Jun 30;333(6176):858–860. doi: 10.1038/333858a0. [DOI] [PubMed] [Google Scholar]
  3. Cognet M., Lone Y. C., Vaulont S., Kahn A., Marie J. Structure of the rat L-type pyruvate kinase gene. J Mol Biol. 1987 Jul 5;196(1):11–25. doi: 10.1016/0022-2836(87)90507-9. [DOI] [PubMed] [Google Scholar]
  4. Crowder C. M., Merlie J. P. Stepwise activation of the mouse acetylcholine receptor delta- and gamma-subunit genes in clonal cell lines. Mol Cell Biol. 1988 Dec;8(12):5257–5267. doi: 10.1128/mcb.8.12.5257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Davis R. L., Weintraub H., Lassar A. B. Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 1987 Dec 24;51(6):987–1000. doi: 10.1016/0092-8674(87)90585-x. [DOI] [PubMed] [Google Scholar]
  6. Feinberg A. P., Vogelstein B. "A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity". Addendum. Anal Biochem. 1984 Feb;137(1):266–267. doi: 10.1016/0003-2697(84)90381-6. [DOI] [PubMed] [Google Scholar]
  7. Konieczny S. F., Emerson C. P., Jr 5-Azacytidine induction of stable mesodermal stem cell lineages from 10T1/2 cells: evidence for regulatory genes controlling determination. Cell. 1984 Oct;38(3):791–800. doi: 10.1016/0092-8674(84)90274-5. [DOI] [PubMed] [Google Scholar]
  8. Minty A. J., Caravatti M., Robert B., Cohen A., Daubas P., Weydert A., Gros F., Buckingham M. E. Mouse actin messenger RNAs. Construction and characterization of a recombinant plasmid molecule containing a complementary DNA transcript of mouse alpha-actin mRNA. J Biol Chem. 1981 Jan 25;256(2):1008–1014. [PubMed] [Google Scholar]
  9. Pinney D. F., Pearson-White S. H., Konieczny S. F., Latham K. E., Emerson C. P., Jr Myogenic lineage determination and differentiation: evidence for a regulatory gene pathway. Cell. 1988 Jun 3;53(5):781–793. doi: 10.1016/0092-8674(88)90095-5. [DOI] [PubMed] [Google Scholar]
  10. Pinset C., Montarras D., Chenevert J., Minty A., Barton P., Laurent C., Gros F. Control of myogenesis in the mouse myogenic C2 cell line by medium composition and by insulin: characterization of permissive and inducible C2 myoblasts. Differentiation. 1988 Jun;38(1):28–34. doi: 10.1111/j.1432-0436.1988.tb00588.x. [DOI] [PubMed] [Google Scholar]
  11. Pinset C., Whalen R. G. Induction of myogenic differentiation in serum-free medium does not require DNA synthesis. Dev Biol. 1985 Apr;108(2):284–289. doi: 10.1016/0012-1606(85)90032-6. [DOI] [PubMed] [Google Scholar]
  12. Tapscott S. J., Davis R. L., Thayer M. J., Cheng P. F., Weintraub H., Lassar A. B. MyoD1: a nuclear phosphoprotein requiring a Myc homology region to convert fibroblasts to myoblasts. Science. 1988 Oct 21;242(4877):405–411. doi: 10.1126/science.3175662. [DOI] [PubMed] [Google Scholar]
  13. Taylor S. M., Jones P. A. Multiple new phenotypes induced in 10T1/2 and 3T3 cells treated with 5-azacytidine. Cell. 1979 Aug;17(4):771–779. doi: 10.1016/0092-8674(79)90317-9. [DOI] [PubMed] [Google Scholar]
  14. Turner D. C. Differentiation in cultures derived from embryonic chicken muscle: the postmitotic, fusion-capable myoblast as a distinct cell type. Differentiation. 1978 Mar 13;10(2):81–93. doi: 10.1111/j.1432-0436.1978.tb00949.x. [DOI] [PubMed] [Google Scholar]
  15. Wright W. E., Sassoon D. A., Lin V. K. Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD. Cell. 1989 Feb 24;56(4):607–617. doi: 10.1016/0092-8674(89)90583-7. [DOI] [PubMed] [Google Scholar]
  16. Wright W. E. The amplified expression of factors regulating myogenesis in L6 myoblasts. J Cell Biol. 1985 Jan;100(1):311–316. doi: 10.1083/jcb.100.1.311. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Yaffe D., Saxel O. Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature. 1977 Dec 22;270(5639):725–727. doi: 10.1038/270725a0. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES