Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jan 23;93(2):700–704. doi: 10.1073/pnas.93.2.700

Human immunodeficiency virus type 1 infection alters chemokine beta peptide expression in human monocytes: implications for recruitment of leukocytes into brain and lymph nodes.

H Schmidtmayerova 1, H S Nottet 1, G Nuovo 1, T Raabe 1, C R Flanagan 1, L Dubrovsky 1, H E Gendelman 1, A Cerami 1, M Bukrinsky 1, B Sherry 1
PMCID: PMC40116  PMID: 8570619

Abstract

Two chemokine (chemoattractant cytokines) beta peptides, macrophage inflammatory proteins 1 alpha and 1 beta (MIP-1 alpha and MIP-1 beta), were induced in human monocyte cultures following infection with the human immunodeficiency virus type 1 (HIV-1). Induction depended on productive viral infection: not only did the kinetics of MIP-1 peptide induction closely follow those of viral replication, but monocyte cultures inoculated with heat-inactivated virus or infected in the presence of AZT failed to produce these chemokine beta peptides. In addition, HIV infection markedly altered the pattern of beta chemokine expression elicited by tumor necrosis factor (TNF), itself a potent proinflammatory cytokine upregulated during the development of AIDS. Reverse transcription (RT)-PCR and RT-in situ PCR studies on brain tissue from patients with AIDS dementia demonstrated elevated MIP-1 alpha and MIP-1 beta mRNA expression relative to comparable samples from HIV-1-infected patients without dementia. Cells expressing chemokines in HIV-1-infected brains were identified morphologically as microglia and astrocytes. As MIP-1 alpha and MIP-1 beta are potent chemoattractants for both monocytes and specific subpopulations of lymphocytes, this dysregulation of beta chemokine expression may influence the trafficking of leukocytes during HIV infection. These data, taken together, suggest a mechanism by which HIV-1-infected monocytes might recruit uninfected T cells and monocytes to sites of active viral replication or inflammation, notably the brain and lymph nodes.

Full text

PDF
700

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baldwin G. C., Fleischmann J., Chung Y., Koyanagi Y., Chen I. S., Golde D. W. Human immunodeficiency virus causes mononuclear phagocyte dysfunction. Proc Natl Acad Sci U S A. 1990 May;87(10):3933–3937. doi: 10.1073/pnas.87.10.3933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Broxmeyer H. E., Sherry B., Cooper S., Ruscetti F. W., Williams D. E., Arosio P., Kwon B. S., Cerami A. Macrophage inflammatory protein (MIP)-1 beta abrogates the capacity of MIP-1 alpha to suppress myeloid progenitor cell growth. J Immunol. 1991 Oct 15;147(8):2586–2594. [PubMed] [Google Scholar]
  3. Budka H. Human immunodeficiency virus (HIV)-induced disease of the central nervous system: pathology and implications for pathogenesis. Acta Neuropathol. 1989;77(3):225–236. doi: 10.1007/BF00687573. [DOI] [PubMed] [Google Scholar]
  4. Bukrinsky M. I., Nottet H. S., Schmidtmayerova H., Dubrovsky L., Flanagan C. R., Mullins M. E., Lipton S. A., Gendelman H. E. Regulation of nitric oxide synthase activity in human immunodeficiency virus type 1 (HIV-1)-infected monocytes: implications for HIV-associated neurological disease. J Exp Med. 1995 Feb 1;181(2):735–745. doi: 10.1084/jem.181.2.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Clouse K. A., Cosentino L. M., Weih K. A., Pyle S. W., Robbins P. B., Hochstein H. D., Natarajan V., Farrar W. L. The HIV-1 gp120 envelope protein has the intrinsic capacity to stimulate monokine secretion. J Immunol. 1991 Nov 1;147(9):2892–2901. [PubMed] [Google Scholar]
  6. Dawson V. L., Dawson T. M., Uhl G. R., Snyder S. H. Human immunodeficiency virus type 1 coat protein neurotoxicity mediated by nitric oxide in primary cortical cultures. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3256–3259. doi: 10.1073/pnas.90.8.3256. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gendelman H. E., Friedman R. M., Joe S., Baca L. M., Turpin J. A., Dveksler G., Meltzer M. S., Dieffenbach C. A selective defect of interferon alpha production in human immunodeficiency virus-infected monocytes. J Exp Med. 1990 Nov 1;172(5):1433–1442. doi: 10.1084/jem.172.5.1433. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gendelman H. E., Orenstein J. M., Baca L. M., Weiser B., Burger H., Kalter D. C., Meltzer M. S. The macrophage in the persistence and pathogenesis of HIV infection. AIDS. 1989 Aug;3(8):475–495. doi: 10.1097/00002030-198908000-00001. [DOI] [PubMed] [Google Scholar]
  9. Gendelman H. E., Orenstein J. M., Martin M. A., Ferrua C., Mitra R., Phipps T., Wahl L. A., Lane H. C., Fauci A. S., Burke D. S. Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med. 1988 Apr 1;167(4):1428–1441. doi: 10.1084/jem.167.4.1428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Genis P., Jett M., Bernton E. W., Boyle T., Gelbard H. A., Dzenko K., Keane R. W., Resnick L., Mizrachi Y., Volsky D. J. Cytokines and arachidonic metabolites produced during human immunodeficiency virus (HIV)-infected macrophage-astroglia interactions: implications for the neuropathogenesis of HIV disease. J Exp Med. 1992 Dec 1;176(6):1703–1718. doi: 10.1084/jem.176.6.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Giulian D., Vaca K., Noonan C. A. Secretion of neurotoxins by mononuclear phagocytes infected with HIV-1. Science. 1990 Dec 14;250(4987):1593–1596. doi: 10.1126/science.2148832. [DOI] [PubMed] [Google Scholar]
  12. Hober D., Haque A., Wattre P., Beaucaire G., Mouton Y., Capron A. Production of tumour necrosis factor-alpha (TNF-alpha) and interleukin-1 (IL-1) in patients with AIDS. Enhanced level of TNF-alpha is related to a higher cytotoxic activity. Clin Exp Immunol. 1989 Dec;78(3):329–333. [PMC free article] [PubMed] [Google Scholar]
  13. Levy J. A. Pathogenesis of human immunodeficiency virus infection. Microbiol Rev. 1993 Mar;57(1):183–289. doi: 10.1128/mr.57.1.183-289.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Meltzer M. S., Skillman D. R., Gomatos P. J., Kalter D. C., Gendelman H. E. Role of mononuclear phagocytes in the pathogenesis of human immunodeficiency virus infection. Annu Rev Immunol. 1990;8:169–194. doi: 10.1146/annurev.iy.08.040190.001125. [DOI] [PubMed] [Google Scholar]
  15. Myers R. D., Paez X., Roscoe A. K., Sherry B., Cerami A. Fever and feeding: differential actions of macrophage inflammatory protein-1 (MIP-1), MIP-1 alpha and MIP-1 beta on rat hypothalamus. Neurochem Res. 1993 Jun;18(6):667–673. doi: 10.1007/BF00966780. [DOI] [PubMed] [Google Scholar]
  16. Nottet H. S., Jett M., Flanagan C. R., Zhai Q. H., Persidsky Y., Rizzino A., Bernton E. W., Genis P., Baldwin T., Schwartz J. A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-alpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J Immunol. 1995 Apr 1;154(7):3567–3581. [PubMed] [Google Scholar]
  17. Nottet H. S., Jett M., Flanagan C. R., Zhai Q. H., Persidsky Y., Rizzino A., Bernton E. W., Genis P., Baldwin T., Schwartz J. A regulatory role for astrocytes in HIV-1 encephalitis. An overexpression of eicosanoids, platelet-activating factor, and tumor necrosis factor-alpha by activated HIV-1-infected monocytes is attenuated by primary human astrocytes. J Immunol. 1995 Apr 1;154(7):3567–3581. [PubMed] [Google Scholar]
  18. Nuovo G. J., Gallery F., MacConnell P., Braun A. In situ detection of polymerase chain reaction-amplified HIV-1 nucleic acids and tumor necrosis factor-alpha RNA in the central nervous system. Am J Pathol. 1994 Apr;144(4):659–666. [PMC free article] [PubMed] [Google Scholar]
  19. Oppenheim J. J., Zachariae C. O., Mukaida N., Matsushima K. Properties of the novel proinflammatory supergene "intercrine" cytokine family. Annu Rev Immunol. 1991;9:617–648. doi: 10.1146/annurev.iy.09.040191.003153. [DOI] [PubMed] [Google Scholar]
  20. Rautonen J., Rautonen N., Martin N. L., Philip R., Wara D. W. Serum interleukin-6 concentrations are elevated and associated with elevated tumor necrosis factor-alpha and immunoglobulin G and A concentrations in children with HIV infection. AIDS. 1991 Nov;5(11):1319–1325. doi: 10.1097/00002030-199111000-00006. [DOI] [PubMed] [Google Scholar]
  21. Rosenberg Z. F., Fauci A. S. The immunopathogenesis of HIV infection. Adv Immunol. 1989;47:377–431. doi: 10.1016/s0065-2776(08)60665-3. [DOI] [PubMed] [Google Scholar]
  22. Schall T. J., Bacon K., Camp R. D., Kaspari J. W., Goeddel D. V. Human macrophage inflammatory protein alpha (MIP-1 alpha) and MIP-1 beta chemokines attract distinct populations of lymphocytes. J Exp Med. 1993 Jun 1;177(6):1821–1826. doi: 10.1084/jem.177.6.1821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Schmidtmayerova H., Bolmont C., Baghdiguian S., Hirsch I., Chermann J. C. Distinctive pattern of infection and replication of HIV1 strains in blood-derived macrophages. Virology. 1992 Sep;190(1):124–133. doi: 10.1016/0042-6822(92)91198-4. [DOI] [PubMed] [Google Scholar]
  24. Sierra-Madero J. G., Toossi Z., Hom D. L., Finegan C. K., Hoenig E., Rich E. A. Relationship between load of virus in alveolar macrophages from human immunodeficiency virus type 1-infected persons, production of cytokines, and clinical status. J Infect Dis. 1994 Jan;169(1):18–27. doi: 10.1093/infdis/169.1.18. [DOI] [PubMed] [Google Scholar]
  25. Spear G. T., Kessler H. A., Rothberg L., Phair J., Landay A. L. Decreased oxidative burst activity of monocytes from asymptomatic HIV-infected individuals. Clin Immunol Immunopathol. 1990 Feb;54(2):184–191. doi: 10.1016/0090-1229(90)90080-a. [DOI] [PubMed] [Google Scholar]
  26. Taub D. D., Conlon K., Lloyd A. R., Oppenheim J. J., Kelvin D. J. Preferential migration of activated CD4+ and CD8+ T cells in response to MIP-1 alpha and MIP-1 beta. Science. 1993 Apr 16;260(5106):355–358. doi: 10.1126/science.7682337. [DOI] [PubMed] [Google Scholar]
  27. Wahl L. M., Corcoran M. L., Pyle S. W., Arthur L. O., Harel-Bellan A., Farrar W. L. Human immunodeficiency virus glycoprotein (gp120) induction of monocyte arachidonic acid metabolites and interleukin 1. Proc Natl Acad Sci U S A. 1989 Jan;86(2):621–625. doi: 10.1073/pnas.86.2.621. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Willey R. L., Smith D. H., Lasky L. A., Theodore T. S., Earl P. L., Moss B., Capon D. J., Martin M. A. In vitro mutagenesis identifies a region within the envelope gene of the human immunodeficiency virus that is critical for infectivity. J Virol. 1988 Jan;62(1):139–147. doi: 10.1128/jvi.62.1.139-147.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Wolpe S. D., Davatelis G., Sherry B., Beutler B., Hesse D. G., Nguyen H. T., Moldawer L. L., Nathan C. F., Lowry S. F., Cerami A. Macrophages secrete a novel heparin-binding protein with inflammatory and neutrophil chemokinetic properties. J Exp Med. 1988 Feb 1;167(2):570–581. doi: 10.1084/jem.167.2.570. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Zhu T., Mo H., Wang N., Nam D. S., Cao Y., Koup R. A., Ho D. D. Genotypic and phenotypic characterization of HIV-1 patients with primary infection. Science. 1993 Aug 27;261(5125):1179–1181. doi: 10.1126/science.8356453. [DOI] [PubMed] [Google Scholar]
  31. van't Wout A. B., Kootstra N. A., Mulder-Kampinga G. A., Albrecht-van Lent N., Scherpbier H. J., Veenstra J., Boer K., Coutinho R. A., Miedema F., Schuitemaker H. Macrophage-tropic variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, and vertical transmission. J Clin Invest. 1994 Nov;94(5):2060–2067. doi: 10.1172/JCI117560. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES