Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jan 23;93(2):714–718. doi: 10.1073/pnas.93.2.714

Recruitment and replacement of hippocampal neurons in young and adult chickadees: an addition to the theory of hippocampal learning.

A Barnea 1, F Nottebohm 1
PMCID: PMC40119  PMID: 11607626

Abstract

We used [3H]thymidine to document the birth of neurons and their recruitment into the hippocampal complex (HC) of juvenile (4.5 months old) and adult blackcapped chickadees (Parus atricapillus) living in their natural surroundings. Birds received a single dose of [3H]thymidine in August and were recaptured and killed 6 weeks later, in early October. All brains were stained with Cresyl violet, a Nissl stain. The boundaries of the HC were defined by reference to the ventricular wall, the brain surface, or differences in neuronal packing density. The HC of juveniles was as large as or larger than that of adults and packing density of HC neurons was 31% higher in juveniles than in adults. Almost all of the 3H-labeled HC neurons were found in a 350-m-wide layer of tissue adjacent to the lateral ventricle. Within this layer the fraction of 3H-labeled neurons was 50% higher in juveniles than in adults. We conclude that the HC of juvenile chickadees recruits more neurons and has more neurons than that of adults. We speculate that juveniles encounter greater environmental novelty than adults and that the greater number of HC neurons found in juveniles allows them to learn more than adults. At a more general level, we suggest that (i) long-term learning alters HC neurons irreversibly; (ii) sustained hippocampal learning requires the periodic replacement of HC neurons; (iii) memories coded by hippocampal neurons are transferred elsewhere before the neurons are replaced.

Full text

PDF
714

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allendoerfer K. L., Shatz C. J. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu Rev Neurosci. 1994;17:185–218. doi: 10.1146/annurev.ne.17.030194.001153. [DOI] [PubMed] [Google Scholar]
  2. Altman J., Das G. D. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol. 1965 Jun;124(3):319–335. doi: 10.1002/cne.901240303. [DOI] [PubMed] [Google Scholar]
  3. Alvarez-Buylla A., Nottebohm F. Migration of young neurons in adult avian brain. Nature. 1988 Sep 22;335(6188):353–354. doi: 10.1038/335353a0. [DOI] [PubMed] [Google Scholar]
  4. Alvarez-Buylla A., Theelen M., Nottebohm F. Proliferation "hot spots" in adult avian ventricular zone reveal radial cell division. Neuron. 1990 Jul;5(1):101–109. doi: 10.1016/0896-6273(90)90038-h. [DOI] [PubMed] [Google Scholar]
  5. Barnea A., Nottebohm F. Seasonal recruitment of hippocampal neurons in adult free-ranging black-capped chickadees. Proc Natl Acad Sci U S A. 1994 Nov 8;91(23):11217–11221. doi: 10.1073/pnas.91.23.11217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bayer S. A., Yackel J. W., Puri P. S. Neurons in the rat dentate gyrus granular layer substantially increase during juvenile and adult life. Science. 1982 May 21;216(4548):890–892. doi: 10.1126/science.7079742. [DOI] [PubMed] [Google Scholar]
  7. Bingman V. P., Bagnoli P., Ioalè P., Casini G. Homing behavior of pigeons after telencephalic ablations. Brain Behav Evol. 1984;24(2-3):94–108. doi: 10.1159/000121308. [DOI] [PubMed] [Google Scholar]
  8. Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Burd G. D., Nottebohm F. Ultrastructural characterization of synaptic terminals formed on newly generated neurons in a song control nucleus of the adult canary forebrain. J Comp Neurol. 1985 Oct 8;240(2):143–152. doi: 10.1002/cne.902400204. [DOI] [PubMed] [Google Scholar]
  10. Cameron H. A., Gould E. Adult neurogenesis is regulated by adrenal steroids in the dentate gyrus. Neuroscience. 1994 Jul;61(2):203–209. doi: 10.1016/0306-4522(94)90224-0. [DOI] [PubMed] [Google Scholar]
  11. Cameron H. A., Woolley C. S., McEwen B. S., Gould E. Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience. 1993 Sep;56(2):337–344. doi: 10.1016/0306-4522(93)90335-d. [DOI] [PubMed] [Google Scholar]
  12. Collingridge G. L., Kehl S. J., McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol. 1983 Jan;334:33–46. doi: 10.1113/jphysiol.1983.sp014478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Cowan W. M., Fawcett J. W., O'Leary D. D., Stanfield B. B. Regressive events in neurogenesis. Science. 1984 Sep 21;225(4668):1258–1265. doi: 10.1126/science.6474175. [DOI] [PubMed] [Google Scholar]
  14. Crespo D., Stanfield B. B., Cowan W. M. Evidence that late-generated granule cells do not simply replace earlier formed neurons in the rat dentate gyrus. Exp Brain Res. 1986;62(3):541–548. doi: 10.1007/BF00236032. [DOI] [PubMed] [Google Scholar]
  15. Eichenbaum H., Otto T., Cohen N. J. The hippocampus--what does it do? Behav Neural Biol. 1992 Jan;57(1):2–36. doi: 10.1016/0163-1047(92)90724-i. [DOI] [PubMed] [Google Scholar]
  16. Erichsen J. T., Bingman V. P., Krebs J. R. The distribution of neuropeptides in the dorsomedial telencephalon of the pigeon (Columba livia): a basis for regional subdivisions. J Comp Neurol. 1991 Dec 15;314(3):478–492. doi: 10.1002/cne.903140306. [DOI] [PubMed] [Google Scholar]
  17. Goelet P., Castellucci V. F., Schacher S., Kandel E. R. The long and the short of long-term memory--a molecular framework. 1986 Jul 31-Aug 6Nature. 322(6078):419–422. doi: 10.1038/322419a0. [DOI] [PubMed] [Google Scholar]
  18. Gould E., McEwen B. S. Neuronal birth and death. Curr Opin Neurobiol. 1993 Oct;3(5):676–682. doi: 10.1016/0959-4388(93)90138-o. [DOI] [PubMed] [Google Scholar]
  19. Gould E., Woolley C. S., McEwen B. S. Naturally occurring cell death in the developing dentate gyrus of the rat. J Comp Neurol. 1991 Feb 15;304(3):408–418. doi: 10.1002/cne.903040306. [DOI] [PubMed] [Google Scholar]
  20. Gould E., Woolley C. S., McEwen B. S. Short-term glucocorticoid manipulations affect neuronal morphology and survival in the adult dentate gyrus. Neuroscience. 1990;37(2):367–375. doi: 10.1016/0306-4522(90)90407-u. [DOI] [PubMed] [Google Scholar]
  21. Healy S. D., Clayton N. S., Krebs J. R. Development of hippocampal specialisation in two species of tit (Parus spp.). Behav Brain Res. 1994 Mar 31;61(1):23–28. doi: 10.1016/0166-4328(94)90004-3. [DOI] [PubMed] [Google Scholar]
  22. Kaplan M. S., Hinds J. W. Neurogenesis in the adult rat: electron microscopic analysis of light radioautographs. Science. 1977 Sep 9;197(4308):1092–1094. doi: 10.1126/science.887941. [DOI] [PubMed] [Google Scholar]
  23. Krebs J. R., Erichsen J. T., Bingman V. P. The distribution of neurotransmitters and neurotransmitter-related enzymes in the dorsomedial telencephalon of the pigeon (Columba livia). J Comp Neurol. 1991 Dec 15;314(3):467–477. doi: 10.1002/cne.903140305. [DOI] [PubMed] [Google Scholar]
  24. Krebs J. R., Sherry D. F., Healy S. D., Perry V. H., Vaccarino A. L. Hippocampal specialization of food-storing birds. Proc Natl Acad Sci U S A. 1989 Feb;86(4):1388–1392. doi: 10.1073/pnas.86.4.1388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Nottebohm F. Neuronal replacement in adulthood. Ann N Y Acad Sci. 1985;457:143–161. doi: 10.1111/j.1749-6632.1985.tb20803.x. [DOI] [PubMed] [Google Scholar]
  26. Oppenheim R. W., Schwartz L. M., Shatz C. J. Neuronal death, a tradition of dying. J Neurobiol. 1992 Nov;23(9):1111–1115. doi: 10.1002/neu.480230903. [DOI] [PubMed] [Google Scholar]
  27. Sherry D. F., Jacobs L. F., Gaulin S. J. Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci. 1992 Aug;15(8):298–303. doi: 10.1016/0166-2236(92)90080-r. [DOI] [PubMed] [Google Scholar]
  28. Sherry D. F., Vaccarino A. L., Buckenham K., Herz R. S. The hippocampal complex of food-storing birds. Brain Behav Evol. 1989;34(5):308–317. doi: 10.1159/000116516. [DOI] [PubMed] [Google Scholar]
  29. Sloviter R. S., Valiquette G., Abrams G. M., Ronk E. C., Sollas A. L., Paul L. A., Neubort S. Selective loss of hippocampal granule cells in the mature rat brain after adrenalectomy. Science. 1989 Jan 27;243(4890):535–538. doi: 10.1126/science.2911756. [DOI] [PubMed] [Google Scholar]
  30. Squire L. R. Mechanisms of memory. Science. 1986 Jun 27;232(4758):1612–1619. doi: 10.1126/science.3086978. [DOI] [PubMed] [Google Scholar]
  31. Stanfield B. B., Trice J. E. Evidence that granule cells generated in the dentate gyrus of adult rats extend axonal projections. Exp Brain Res. 1988;72(2):399–406. doi: 10.1007/BF00250261. [DOI] [PubMed] [Google Scholar]
  32. Stokes T. M., Leonard C. M., Nottebohm F. The telencephalon, diencephalon, and mesencephalon of the canary, Serinus canaria, in stereotaxic coordinates. J Comp Neurol. 1974 Aug 1;156(3):337–374. doi: 10.1002/cne.901560305. [DOI] [PubMed] [Google Scholar]
  33. Zola-Morgan S. M., Squire L. R. The primate hippocampal formation: evidence for a time-limited role in memory storage. Science. 1990 Oct 12;250(4978):288–290. doi: 10.1126/science.2218534. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES