Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1989 Oct;8(10):2911–2916. doi: 10.1002/j.1460-2075.1989.tb08440.x

Site-specific mutagenesis identifies amino acid residues critical in prohormone processing.

S Gomez 1, G Boileau 1, L Zollinger 1, C Nault 1, M Rholam 1, P Cohen 1
PMCID: PMC401355  PMID: 2573512

Abstract

Peptide hormones are generally synthesized as inactive higher mol. wt precursors. Processing of the prohormone into biologically active peptides by specific proteolytic cleavages occurs most often at pairs of basic amino acids but also at single arginine residues. To study the role of protein secondary structure in this process, we used site-directed mutagenesis to modify the predicted secondary structure around the cleavage sites of human prosomatostatin and monitored the processing of the precursor after introduction of the mutated cDNAs in Neuro2A cells. Amino acid substitutions were introduced that affected the possibility of forming beta-turn structures in the immediate vicinity of the somatostatin-28 (S-28) and somatostatin-14 (S-14) cleavage sites. Infection of Neuro2A cells with a retrovirus carrying a human somatostatin cDNA resulted in the expression of prosomatostatin and its processing into S-28 and S-14, indicating that these cells have the necessary enzymes to process prohormone at both single and paired amino acid residues. Disruption of the different beta-turns had various effects on prosomatostatin processing: substitution of Ala for Pro-5 drastically decreased prosomatostatin processing and replacement of Pro-9 by Ala led to the accumulation of the intermediate maturation product [Arg-2Lys-1]-S-14. In contrast, substitution of Ala for Asn-12, Gly+2 and Cys+3 respectively had only very little effect on the proteolytic processing of prosomatostatin. Our results show that amino acids other than the basic amino acid residues are required to define the cleavage sites for prohormone proteolytic processing and suggest that higher orders of protein structure are involved in substrate recognition by the endoproteases.

Full text

PDF
2911

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Argos P., Taylor W. L., Minth C. D., Dixon J. E. Nucleotide and amino acid sequence comparisons of preprosomatostatins. J Biol Chem. 1983 Jul 25;258(14):8788–8793. [PubMed] [Google Scholar]
  2. Armentano D., Yu S. F., Kantoff P. W., von Ruden T., Anderson W. F., Gilboa E. Effect of internal viral sequences on the utility of retroviral vectors. J Virol. 1987 May;61(5):1647–1650. doi: 10.1128/jvi.61.5.1647-1650.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Beinfeld M. C., Bourdais J., Kuks P., Morel A., Cohen P. Characterization of an endoprotease from rat small intestinal mucosal secretory granules which generates somatostatin-28 from prosomatostatin by cleavage after a single arginine residue. J Biol Chem. 1989 Mar 15;264(8):4460–4465. [PubMed] [Google Scholar]
  4. Chou P. Y., Fasman G. D. Empirical predictions of protein conformation. Annu Rev Biochem. 1978;47:251–276. doi: 10.1146/annurev.bi.47.070178.001343. [DOI] [PubMed] [Google Scholar]
  5. Clamagirand C., Camier M., Fahy C., Clavreul C., Créminon C., Cohen P. C-terminally extended ocytocin and pro-ocytocin: neurophysin peptide converting enzyme in bovine corpus luteum. Biochem Biophys Res Commun. 1987 Mar 13;143(2):789–796. doi: 10.1016/0006-291x(87)91423-9. [DOI] [PubMed] [Google Scholar]
  6. Clamagirand C., Creminon C., Fahy C., Boussetta H., Cohen P. Partial purification and functional properties of an endoprotease from bovine neurosecretory granules cleaving proocytocin/neurophysin peptides at the basic amino acid doublet. Biochemistry. 1987 Sep 22;26(19):6018–6023. doi: 10.1021/bi00393a011. [DOI] [PubMed] [Google Scholar]
  7. Cohen P. Proteolytic events in the post-translational processing of polypeptide hormone precursors. Biochimie. 1987 Feb;69(2):87–89. doi: 10.1016/0300-9084(87)90239-2. [DOI] [PubMed] [Google Scholar]
  8. Créminon C., Rholam M., Boussetta H., Marrakchi N., Cohen P. Synthetic peptide substrates as models to study a pro-ocytocin/neurophysin converting enzyme. J Chromatogr. 1988 May 25;440:439–448. doi: 10.1016/s0021-9673(00)94547-3. [DOI] [PubMed] [Google Scholar]
  9. Douglass J., Civelli O., Herbert E. Polyprotein gene expression: generation of diversity of neuroendocrine peptides. Annu Rev Biochem. 1984;53:665–715. doi: 10.1146/annurev.bi.53.070184.003313. [DOI] [PubMed] [Google Scholar]
  10. Duffaud G., Inouye M. Signal peptidases recognize a structural feature at the cleavage site of secretory proteins. J Biol Chem. 1988 Jul 25;263(21):10224–10228. [PubMed] [Google Scholar]
  11. Fisher J. M., Scheller R. H. Prohormone processing and the secretory pathway. J Biol Chem. 1988 Nov 15;263(32):16515–16518. [PubMed] [Google Scholar]
  12. Gluschankof P., Gomez S., Lepage A., Créminon C., Nyberg F., Terenius L., Cohen P. Role of peptide substrate structure in the selective processing of peptide prohormones at basic amino acid pairs by endoproteases. FEBS Lett. 1988 Jul 4;234(1):149–152. doi: 10.1016/0014-5793(88)81322-x. [DOI] [PubMed] [Google Scholar]
  13. Gluschankof P., Gomez S., Morel A., Cohen P. Enzymes that process somatostatin precursors. A novel endoprotease that cleaves before the arginine-lysine doublet is involved in somatostatin-28 convertase activity of rat brain cortex. J Biol Chem. 1987 Jul 15;262(20):9615–9620. [PubMed] [Google Scholar]
  14. Gomez S., Gluschankof P., Lepage A., Cohen P. Relationship between endo- and exopeptidases in a processing enzyme system: activation of an endoprotease by the aminopeptidase B-like activity in somatostatin-28 convertase. Proc Natl Acad Sci U S A. 1988 Aug;85(15):5468–5472. doi: 10.1073/pnas.85.15.5468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Gráf L., Hollósi M. Substrate conformation directs selective enzymic cleavage of beta-lipotropin into beta-endorphin. Biochem Biophys Res Commun. 1980 Apr 29;93(4):1089–1093. doi: 10.1016/0006-291x(80)90600-2. [DOI] [PubMed] [Google Scholar]
  16. Mann R., Mulligan R. C., Baltimore D. Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell. 1983 May;33(1):153–159. doi: 10.1016/0092-8674(83)90344-6. [DOI] [PubMed] [Google Scholar]
  17. Matthews B. W. Protein-DNA interaction. No code for recognition. Nature. 1988 Sep 22;335(6188):294–295. doi: 10.1038/335294a0. [DOI] [PubMed] [Google Scholar]
  18. Ni F., Scheraga H. A., Lord S. T. High-resolution NMR studies of fibrinogen-like peptides in solution: resonance assignments and conformational analysis of residues 1-23 of the A alpha chain of human fibrinogen. Biochemistry. 1988 Jun 14;27(12):4481–4491. doi: 10.1021/bi00412a040. [DOI] [PubMed] [Google Scholar]
  19. Noël G., Zollinger L., Laliberté F., Rassart E., Crine P., Boileau G. Targeting and processing of pro-opiomelanocortin in neuronal cell lines. J Neurochem. 1989 Apr;52(4):1050–1057. doi: 10.1111/j.1471-4159.1989.tb01846.x. [DOI] [PubMed] [Google Scholar]
  20. Noël G., Zollinger L., Larivière N., Nault C., Crine P., Boileau G. Expression of porcine pro-opiomelanocortin cDNA in heterologous monkey kidney cells. Biosynthesis and secretion of the prohormone without processing. J Biol Chem. 1987 Feb 5;262(4):1876–1881. [PubMed] [Google Scholar]
  21. Plevrakis I., Clamagirand C., Créminon C., Brakch N., Rholam M., Cohen P. Proocytocin/neurophysin convertase from bovine neurohypophysis and corpus luteum secretory granules: complete purification, structure-function relationships, and competitive inhibitor. Biochemistry. 1989 Mar 21;28(6):2705–2710. doi: 10.1021/bi00432a051. [DOI] [PubMed] [Google Scholar]
  22. Rholam M., Nicolas P., Cohen P. Precursors for peptide hormones share common secondary structures forming features at the proteolytic processing sites. FEBS Lett. 1986 Oct 20;207(1):1–6. doi: 10.1016/0014-5793(86)80002-3. [DOI] [PubMed] [Google Scholar]
  23. Sevarino K. A., Stork P., Ventimiglia R., Mandel G., Goodman R. H. Amino-terminal sequences of prosomatostatin direct intracellular targeting but not processing specificity. Cell. 1989 Apr 7;57(1):11–19. doi: 10.1016/0092-8674(89)90167-0. [DOI] [PubMed] [Google Scholar]
  24. Shen L. P., Pictet R. L., Rutter W. J. Human somatostatin I: sequence of the cDNA. Proc Natl Acad Sci U S A. 1982 Aug;79(15):4575–4579. doi: 10.1073/pnas.79.15.4575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Taylor J. W., Ott J., Eckstein F. The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA. Nucleic Acids Res. 1985 Dec 20;13(24):8765–8785. doi: 10.1093/nar/13.24.8765. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES