Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jan 23;93(2):814–818. doi: 10.1073/pnas.93.2.814

Gangliosides are neuronal ligands for myelin-associated glycoprotein.

L J Yang 1, C B Zeller 1, N L Shaper 1, M Kiso 1, A Hasegawa 1, R E Shapiro 1, R L Schnaar 1
PMCID: PMC40139  PMID: 8570640

Abstract

Nerve cells depend on specific interactions with glial cells for proper function. Myelinating glial cells are thought to associate with neuronal axons, in part, via the cell-surface adhesion protein, myelin-associated glycoprotein (MAG). MAG is also thought to be a major inhibitor of neurite outgrowth (axon regeneration) in the adult central nervous system. Primary structure and in vitro function place MAG in an immunoglobulin-related family of sialic acid-binding lactins. We report that a limited set of structurally related gangliosides, known to be expressed on myelinated neurons in vivo, are ligands for MAG. When major brain gangliosides were adsorbed as artificial membranes on plastic microwells, only GT1b and GD1a supported cell adhesion of MAG-transfected COS-1 cells. Furthermore, a quantitatively minor ganglioside expressed on cholinergic neurons, GQ1b alpha (also known as Chol-1 alpha-b), was much more potent than GT1b or GD1a in supporting MAG-mediated cell adhesion. Adhesion to either GT1b or GQ1b alpha was abolished by pretreatment of the adsorbed gangliosides with neuraminidase. On the basis of structure-function studies of 19 test glycosphingolipids, an alpha 2,3-N-acetylneuraminic acid residue on the terminal galactose of a gangliotetraose core is necessary for MAG binding, and additional sialic acid residues linked to the other neutral core saccharides [Gal(II) and GalNAc(III)] contribute significantly to binding affinity. MAG-mediated adhesion to gangliosides was blocked by pretreatment of the MAG-transfected COS-1 cells with anti-MAG monoclonal antibody 513, which is known to inhibit oligodendrocyte-neuron binding. These data are consistent with the conclusion that MAG-mediated cell-cell interactions involve MAG-ganglioside recognition and binding.

Full text

PDF
814

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arquint M., Roder J., Chia L. S., Down J., Wilkinson D., Bayley H., Braun P., Dunn R. Molecular cloning and primary structure of myelin-associated glycoprotein. Proc Natl Acad Sci U S A. 1987 Jan;84(2):600–604. doi: 10.1073/pnas.84.2.600. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blackburn C. C., Schnaar R. L. Carbohydrate-specific cell adhesion is mediated by immobilized glycolipids. J Biol Chem. 1983 Jan 25;258(2):1180–1188. [PubMed] [Google Scholar]
  3. Blackburn C. C., Swank-Hill P., Schnaar R. L. Gangliosides support neural retina cell adhesion. J Biol Chem. 1986 Feb 25;261(6):2873–2881. [PubMed] [Google Scholar]
  4. Caroni P., Savio T., Schwab M. E. Central nervous system regeneration: oligodendrocytes and myelin as non-permissive substrates for neurite growth. Prog Brain Res. 1988;78:363–370. doi: 10.1016/s0079-6123(08)60305-2. [DOI] [PubMed] [Google Scholar]
  5. Dahms N. M., Schnaar R. L. Ganglioside composition is regulated during differentiation in the neuroblastoma X glioma hybrid cell line NG108-15. J Neurosci. 1983 Apr;3(4):806–817. doi: 10.1523/JNEUROSCI.03-04-00806.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fahrig T., Probstmeier R., Spiess E., Meyer-Franke A., Kirchhoff F., Drescher B., Schachner M. Functional topography of the myelin-associated glycoprotein. I. Mapping of domains by electron microscopy. Eur J Neurosci. 1993 Sep 1;5(9):1118–1126. doi: 10.1111/j.1460-9568.1993.tb00966.x. [DOI] [PubMed] [Google Scholar]
  7. Ferretti P., Borroni E. Putative cholinergic-specific gangliosides in guinea pig forebrain. J Neurochem. 1986 Jun;46(6):1888–1894. doi: 10.1111/j.1471-4159.1986.tb08509.x. [DOI] [PubMed] [Google Scholar]
  8. Hirabayashi Y., Nakao T., Irie F., Whittaker V. P., Kon K., Ando S. Structural characterization of a novel cholinergic neuron-specific ganglioside in bovine brain. J Biol Chem. 1992 Jun 25;267(18):12973–12978. [PubMed] [Google Scholar]
  9. Holmgren J. Comparison of the tissue receptors for Vibrio cholerae and Escherichia coli enterotoxins by means of gangliosides and natural cholera toxoid. Infect Immun. 1973 Dec;8(6):851–859. doi: 10.1128/iai.8.6.851-859.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Johnson P. W., Abramow-Newerly W., Seilheimer B., Sadoul R., Tropak M. B., Arquint M., Dunn R. J., Schachner M., Roder J. C. Recombinant myelin-associated glycoprotein confers neural adhesion and neurite outgrowth function. Neuron. 1989 Sep;3(3):377–385. doi: 10.1016/0896-6273(89)90262-6. [DOI] [PubMed] [Google Scholar]
  11. Jones R. T., Walker J. H., Richardson P. J., Fox G. Q., Whittaker V. P. Immunohistochemical localization of cholinergic nerve terminals. Cell Tissue Res. 1981;218(2):355–373. doi: 10.1007/BF00210350. [DOI] [PubMed] [Google Scholar]
  12. Kelm S., Pelz A., Schauer R., Filbin M. T., Tang S., de Bellard M. E., Schnaar R. L., Mahoney J. A., Hartnell A., Bradfield P. Sialoadhesin, myelin-associated glycoprotein and CD22 define a new family of sialic acid-dependent adhesion molecules of the immunoglobulin superfamily. Curr Biol. 1994 Nov 1;4(11):965–972. doi: 10.1016/s0960-9822(00)00220-7. [DOI] [PubMed] [Google Scholar]
  13. Lai C., Brow M. A., Nave K. A., Noronha A. B., Quarles R. H., Bloom F. E., Milner R. J., Sutcliffe J. G. Two forms of 1B236/myelin-associated glycoprotein, a cell adhesion molecule for postnatal neural development, are produced by alternative splicing. Proc Natl Acad Sci U S A. 1987 Jun;84(12):4337–4341. doi: 10.1073/pnas.84.12.4337. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. McEver R. P., Moore K. L., Cummings R. D. Leukocyte trafficking mediated by selectin-carbohydrate interactions. J Biol Chem. 1995 May 12;270(19):11025–11028. doi: 10.1074/jbc.270.19.11025. [DOI] [PubMed] [Google Scholar]
  15. McKerracher L., David S., Jackson D. L., Kottis V., Dunn R. J., Braun P. E. Identification of myelin-associated glycoprotein as a major myelin-derived inhibitor of neurite growth. Neuron. 1994 Oct;13(4):805–811. doi: 10.1016/0896-6273(94)90247-x. [DOI] [PubMed] [Google Scholar]
  16. Mukhopadhyay G., Doherty P., Walsh F. S., Crocker P. R., Filbin M. T. A novel role for myelin-associated glycoprotein as an inhibitor of axonal regeneration. Neuron. 1994 Sep;13(3):757–767. doi: 10.1016/0896-6273(94)90042-6. [DOI] [PubMed] [Google Scholar]
  17. Needham L. K., Schnaar R. L. Carbohydrate recognition in the peripheral nervous system: a calcium-dependent membrane binding site for HNK-1 reactive glycolipids potentially involved in Schwann cell adhesion. J Cell Biol. 1993 Apr;121(2):397–408. doi: 10.1083/jcb.121.2.397. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Poltorak M., Sadoul R., Keilhauer G., Landa C., Fahrig T., Schachner M. Myelin-associated glycoprotein, a member of the L2/HNK-1 family of neural cell adhesion molecules, is involved in neuron-oligodendrocyte and oligodendrocyte-oligodendrocyte interaction. J Cell Biol. 1987 Oct;105(4):1893–1899. doi: 10.1083/jcb.105.4.1893. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Powell L. D., Varki A. I-type lectins. J Biol Chem. 1995 Jun 16;270(24):14243–14246. doi: 10.1074/jbc.270.24.14243. [DOI] [PubMed] [Google Scholar]
  20. Rahmann H., Rösner H., Körtje K. H., Beitinger H., Seybold V. Ca(2+)-ganglioside-interaction in neuronal differentiation and development. Prog Brain Res. 1994;101:127–145. [PubMed] [Google Scholar]
  21. Rutishauser U., Jessell T. M. Cell adhesion molecules in vertebrate neural development. Physiol Rev. 1988 Jul;68(3):819–857. doi: 10.1152/physrev.1988.68.3.819. [DOI] [PubMed] [Google Scholar]
  22. Rösner H. Ganglioside changes in the chicken optic lobes as biochemical indicators of brain development and maturation. Brain Res. 1982 Mar 18;236(1):49–61. doi: 10.1016/0006-8993(82)90033-6. [DOI] [PubMed] [Google Scholar]
  23. Sadoul R., Fahrig T., Bartsch U., Schachner M. Binding properties of liposomes containing the myelin-associated glycoprotein MAG to neural cell cultures. J Neurosci Res. 1990 Jan;25(1):1–13. doi: 10.1002/jnr.490250102. [DOI] [PubMed] [Google Scholar]
  24. Salzer J. L., Holmes W. P., Colman D. R. The amino acid sequences of the myelin-associated glycoproteins: homology to the immunoglobulin gene superfamily. J Cell Biol. 1987 Apr;104(4):957–965. doi: 10.1083/jcb.104.4.957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Salzer J. L., Pedraza L., Brown M., Struyk A., Afar D., Bell J. Structure and function of the myelin-associated glycoproteins. Ann N Y Acad Sci. 1990;605:302–312. doi: 10.1111/j.1749-6632.1990.tb42404.x. [DOI] [PubMed] [Google Scholar]
  26. Schwab M. E., Kapfhammer J. P., Bandtlow C. E. Inhibitors of neurite growth. Annu Rev Neurosci. 1993;16:565–595. doi: 10.1146/annurev.ne.16.030193.003025. [DOI] [PubMed] [Google Scholar]
  27. Seed B. An LFA-3 cDNA encodes a phospholipid-linked membrane protein homologous to its receptor CD2. 1987 Oct 29-Nov 4Nature. 329(6142):840–842. doi: 10.1038/329840a0. [DOI] [PubMed] [Google Scholar]
  28. Seed B., Aruffo A. Molecular cloning of the CD2 antigen, the T-cell erythrocyte receptor, by a rapid immunoselection procedure. Proc Natl Acad Sci U S A. 1987 May;84(10):3365–3369. doi: 10.1073/pnas.84.10.3365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Sharon N., Lis H. Lectins as cell recognition molecules. Science. 1989 Oct 13;246(4927):227–234. doi: 10.1126/science.2552581. [DOI] [PubMed] [Google Scholar]
  30. Stults C. L., Sweeley C. C., Macher B. A. Glycosphingolipids: structure, biological source, and properties. Methods Enzymol. 1989;179:167–214. doi: 10.1016/0076-6879(89)79122-9. [DOI] [PubMed] [Google Scholar]
  31. Svennerholm L. Designation and schematic structure of gangliosides and allied glycosphingolipids. Prog Brain Res. 1994;101:XI–XIV. doi: 10.1016/S0079-6123(08)61935-4. [DOI] [PubMed] [Google Scholar]
  32. Trapp B. D. Myelin-associated glycoprotein. Location and potential functions. Ann N Y Acad Sci. 1990;605:29–43. doi: 10.1111/j.1749-6632.1990.tb42378.x. [DOI] [PubMed] [Google Scholar]
  33. Yoshino H., Ariga T., Latov N., Miyatake T., Kushi Y., Kasama T., Handa S., Yu R. K. Fucosyl-GM1 in human sensory nervous tissue is a target antigen in patients with autoimmune neuropathies. J Neurochem. 1993 Aug;61(2):658–663. doi: 10.1111/j.1471-4159.1993.tb02170.x. [DOI] [PubMed] [Google Scholar]
  34. Yu R. K., Macala L. J., Taki T., Weinfield H. M., Yu F. S. Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J Neurochem. 1988 Jun;50(6):1825–1829. doi: 10.1111/j.1471-4159.1988.tb02484.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES