Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1989 Nov;8(11):3467–3475. doi: 10.1002/j.1460-2075.1989.tb08511.x

The refined 1.9 A crystal structure of human alpha-thrombin: interaction with D-Phe-Pro-Arg chloromethylketone and significance of the Tyr-Pro-Pro-Trp insertion segment.

W Bode 1, I Mayr 1, U Baumann 1, R Huber 1, S R Stone 1, J Hofsteenge 1
PMCID: PMC401503  PMID: 2583108

Abstract

A stoichiometric complex formed between human alpha-thrombin and D-Phe-Pro-Arg chloromethylketone was crystallized in an orthorhombic crystal form. Orientation and position of a starting model derived from homologous modelling were determined by Patterson search methods. The thrombin model was completed in a cyclic modelling-crystallographic refinement procedure to a final R-value of 0.171 for X-ray data to 1.92 A. The structure is in full agreement with published cDNA sequence data. The A-chain, ordered only in its central part, is positioned along the molecular surface opposite to the active site. The B-chain exhibits the characteristic polypeptide fold of trypsin-like proteinases. Several extended insertions form, however, large protuberances; most important for interaction with macromolecular substrates is the characteristic thrombin loop around Tyr60A-Pro60B-Pro60C-Trp60D (chymotrypsinogen numbering) and the enlarged loop around the unique Trp148. The former considerably restricts the active site cleft and seems likely to be responsible for poor binding of most natural proteinase inhibitors to thrombin. The exceptional specificity of D-Phe-Pro-Arg chloromethylketone can be explained by a hydrophobic cage formed by Ile174, Trp215, Leu99, His57, Tyr60A and Trp60D. The narrow active site cleft, with a more polar base and hydrophobic rims, extends towards the arginine-rich surface of loop Lys70-Glu80 that probably represents part of the anionic binding region for hirudin and fibrinogen.

Full text

PDF
3467

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bajusz S., Barabás E., Tolnay P., Széll E., Bagdy D. Inhibition of thrombin and trypsin by tripeptide aldehydes. Int J Pept Protein Res. 1978 Oct;12(4):217–221. doi: 10.1111/j.1399-3011.1978.tb02889.x. [DOI] [PubMed] [Google Scholar]
  2. Bar-Shavit R., Kahn A. J., Mann K. G., Wilner G. D. Identification of a thrombin sequence with growth factor activity on macrophages. Proc Natl Acad Sci U S A. 1986 Feb;83(4):976–980. doi: 10.1073/pnas.83.4.976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Berliner L. J., Birktoft J. J., Miller T. L., Musci G., Scheffler J. E., Shen Y. Y., Sugawara Y. Thrombin: active-site topography. Ann N Y Acad Sci. 1986;485:80–95. doi: 10.1111/j.1749-6632.1986.tb34570.x. [DOI] [PubMed] [Google Scholar]
  4. Berliner L. J., Shen Y. Y. Physical evidence for an apolar binding site near the catalytic center of human alpha-thrombin. Biochemistry. 1977 Oct 18;16(21):4622–4626. doi: 10.1021/bi00640a015. [DOI] [PubMed] [Google Scholar]
  5. Berliner L. J. Structure-function relationships in human alpha- and gamma-thrombins. Mol Cell Biochem. 1984;61(2):159–172. doi: 10.1007/BF00222493. [DOI] [PubMed] [Google Scholar]
  6. Berliner L. J., Sugawara Y., Fenton J. W., 2nd Human alpha-thrombin binding to nonpolymerized fibrin-Sepharose: evidence for an anionic binding region. Biochemistry. 1985 Nov 19;24(24):7005–7009. doi: 10.1021/bi00345a038. [DOI] [PubMed] [Google Scholar]
  7. Bezeaud A., Guillin M. C. Enzymic and nonenzymic properties of human beta-thrombin. J Biol Chem. 1988 Mar 15;263(8):3576–3581. [PubMed] [Google Scholar]
  8. Bing D. H., Cory M., Fenton J. W., 2nd Exo-site affinity labeling of human thrombins. Similar labeling on the A chain and B chain/fragments of clotting alpha- and nonclotting gamma/beta-thrombins. J Biol Chem. 1977 Nov 25;252(22):8027–8034. [PubMed] [Google Scholar]
  9. Bode W., Chen Z., Bartels K., Kutzbach C., Schmidt-Kastner G., Bartunik H. Refined 2 A X-ray crystal structure of porcine pancreatic kallikrein A, a specific trypsin-like serine proteinase. Crystallization, structure determination, crystallographic refinement, structure and its comparison with bovine trypsin. J Mol Biol. 1983 Feb 25;164(2):237–282. doi: 10.1016/0022-2836(83)90077-3. [DOI] [PubMed] [Google Scholar]
  10. Bode W., Greyling H. J., Huber R., Otlewski J., Wilusz T. The refined 2.0 A X-ray crystal structure of the complex formed between bovine beta-trypsin and CMTI-I, a trypsin inhibitor from squash seeds (Cucurbita maxima). Topological similarity of the squash seed inhibitors with the carboxypeptidase A inhibitor from potatoes. FEBS Lett. 1989 Jan 2;242(2):285–292. doi: 10.1016/0014-5793(89)80486-7. [DOI] [PubMed] [Google Scholar]
  11. Bode W., Schwager P. The refined crystal structure of bovine beta-trypsin at 1.8 A resolution. II. Crystallographic refinement, calcium binding site, benzamidine binding site and active site at pH 7.0. J Mol Biol. 1975 Nov 15;98(4):693–717. doi: 10.1016/s0022-2836(75)80005-2. [DOI] [PubMed] [Google Scholar]
  12. Bode W., Walter J., Huber R., Wenzel H. R., Tschesche H. The refined 2.2-A (0.22-nm) X-ray crystal structure of the ternary complex formed by bovine trypsinogen, valine-valine and the Arg15 analogue of bovine pancreatic trypsin inhibitor. Eur J Biochem. 1984 Oct 1;144(1):185–190. doi: 10.1111/j.1432-1033.1984.tb08447.x. [DOI] [PubMed] [Google Scholar]
  13. Bode W., Wei A. Z., Huber R., Meyer E., Travis J., Neumann S. X-ray crystal structure of the complex of human leukocyte elastase (PMN elastase) and the third domain of the turkey ovomucoid inhibitor. EMBO J. 1986 Oct;5(10):2453–2458. doi: 10.1002/j.1460-2075.1986.tb04521.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Boissel J. P., Le Bonniec B., Rabiet M. J., Labie D., Elion J. Covalent structures of beta and gamma autolytic derivatives of human alpha-thrombin. J Biol Chem. 1984 May 10;259(9):5691–5697. [PubMed] [Google Scholar]
  15. Braun P. J., Hofsteenge J., Chang J. Y., Stone S. R. Preparation and characterization of proteolyzed forms of human alpha-thrombin. Thromb Res. 1988 Apr 15;50(2):273–283. doi: 10.1016/0049-3848(88)90228-9. [DOI] [PubMed] [Google Scholar]
  16. Butkowski R. J., Elion J., Downing M. R., Mann K. G. Primary structure of human prethrombin 2 and alpha-thrombin. J Biol Chem. 1977 Jul 25;252(14):4942–4957. [PubMed] [Google Scholar]
  17. Chang J. Y. The functional domain of hirudin, a thrombin-specific inhibitor. FEBS Lett. 1983 Dec 12;164(2):307–313. doi: 10.1016/0014-5793(83)80307-x. [DOI] [PubMed] [Google Scholar]
  18. Chang J. Y. The hirudin-binding site of human alpha-thrombin. Identification of lysyl residues which participate in the combining site of hirudin-thrombin complex. J Biol Chem. 1989 May 5;264(13):7141–7146. [PubMed] [Google Scholar]
  19. Chang J. Y. The structures and proteolytic specificities of autolysed human thrombin. Biochem J. 1986 Dec 15;240(3):797–802. doi: 10.1042/bj2400797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Cohen G. H., Silverton E. W., Davies D. R. Refined crystal structure of gamma-chymotrypsin at 1.9 A resolution. Comparison with other pancreatic serine proteases. J Mol Biol. 1981 Jun 5;148(4):449–479. doi: 10.1016/0022-2836(81)90186-8. [DOI] [PubMed] [Google Scholar]
  21. Cunningham D. D., Farrell D. H. Thrombin interactions with cultured fibroblasts: relationship to mitogenic stimulation. Ann N Y Acad Sci. 1986;485:240–248. doi: 10.1111/j.1749-6632.1986.tb34586.x. [DOI] [PubMed] [Google Scholar]
  22. Degen S. J., MacGillivray R. T., Davie E. W. Characterization of the complementary deoxyribonucleic acid and gene coding for human prothrombin. Biochemistry. 1983 Apr 26;22(9):2087–2097. doi: 10.1021/bi00278a008. [DOI] [PubMed] [Google Scholar]
  23. Esmon C. T., Esmon N. L., Kurosawa S., Johnson A. E. Interaction of thrombin with thrombomodulin. Ann N Y Acad Sci. 1986;485:215–220. doi: 10.1111/j.1749-6632.1986.tb34583.x. [DOI] [PubMed] [Google Scholar]
  24. Fenton J. W., 2nd Thrombin specificity. Ann N Y Acad Sci. 1981;370:468–495. doi: 10.1111/j.1749-6632.1981.tb29757.x. [DOI] [PubMed] [Google Scholar]
  25. Fenton J. W., 2nd Thrombin. Ann N Y Acad Sci. 1986;485:5–15. doi: 10.1111/j.1749-6632.1986.tb34563.x. [DOI] [PubMed] [Google Scholar]
  26. Furie B., Bing D. H., Feldmann R. J., Robison D. J., Burnier J. P., Furie B. C. Computer-generated models of blood coagulation factor Xa, factor IXa, and thrombin based upon structural homology with other serine proteases. J Biol Chem. 1982 Apr 10;257(7):3875–3882. [PubMed] [Google Scholar]
  27. Hageman T. C., Scheraga H. A. Mechanism of action of thrombin on fibrinogen. Reaction of the N-terminal CNBr fragment from the Aalpha chain of human fibrinogen with bovine thrombin. Arch Biochem Biophys. 1974 Oct;164(2):707–715. doi: 10.1016/0003-9861(74)90083-6. [DOI] [PubMed] [Google Scholar]
  28. Hofsteenge J., Braun P. J., Stone S. R. Enzymatic properties of proteolytic derivatives of human alpha-thrombin. Biochemistry. 1988 Mar 22;27(6):2144–2151. doi: 10.1021/bi00406a049. [DOI] [PubMed] [Google Scholar]
  29. Hogg D. H., Blombäck B. The mechanism of the fibrinogen-thrombin reaction. Thromb Res. 1978 Jun;12(6):953–964. doi: 10.1016/0049-3848(78)90051-8. [DOI] [PubMed] [Google Scholar]
  30. Horne M. K., 3rd, Gralnick H. R. The oligosaccharide of human thrombin: investigations of functional significance. Blood. 1984 Jan;63(1):188–194. [PubMed] [Google Scholar]
  31. Kaczmarek E., McDonagh J. Thrombin binding to the A alpha-, B beta-, and gamma-chains of fibrinogen and to their remnants contained in fragment E. J Biol Chem. 1988 Sep 25;263(27):13896–13900. [PubMed] [Google Scholar]
  32. Kaminski M., McDonagh J. Inhibited thrombins. Interactions with fibrinogen and fibrin. Biochem J. 1987 Mar 15;242(3):881–887. doi: 10.1042/bj2420881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Kawabata S., Morita T., Iwanaga S., Igarashi H. Staphylocoagulase-binding region in human prothrombin. J Biochem. 1985 Jan;97(1):325–331. doi: 10.1093/oxfordjournals.jbchem.a135057. [DOI] [PubMed] [Google Scholar]
  34. Kettner C., Shaw E. D-Phe-Pro-ArgCH2C1-A selective affinity label for thrombin. Thromb Res. 1979;14(6):969–973. doi: 10.1016/0049-3848(79)90014-8. [DOI] [PubMed] [Google Scholar]
  35. Kettner C., Shaw E. Inactivation of trypsin-like enzymes with peptides of arginine chloromethyl ketone. Methods Enzymol. 1981;80(Pt 100):826–842. doi: 10.1016/s0076-6879(81)80065-1. [DOI] [PubMed] [Google Scholar]
  36. Laskowski M., Jr, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem. 1980;49:593–626. doi: 10.1146/annurev.bi.49.070180.003113. [DOI] [PubMed] [Google Scholar]
  37. Lewis S. D., Lorand L., Fenton J. W., 2nd, Shafer J. A. Catalytic competence of human alpha- and gamma-thrombin in the activation of fibrinogen and factor XIII. Biochemistry. 1987 Dec 1;26(24):7597–7603. doi: 10.1021/bi00398a010. [DOI] [PubMed] [Google Scholar]
  38. Liem R. K., Scheraga H. A. Mechanism of action of thrombin on fibrinogen. IV. Further mapping of the active sites of thrombin and trypsin. Arch Biochem Biophys. 1974 Jan;160(1):333–339. doi: 10.1016/s0003-9861(74)80041-x. [DOI] [PubMed] [Google Scholar]
  39. Loebermann H., Tokuoka R., Deisenhofer J., Huber R. Human alpha 1-proteinase inhibitor. Crystal structure analysis of two crystal modifications, molecular model and preliminary analysis of the implications for function. J Mol Biol. 1984 Aug 15;177(3):531–557. [PubMed] [Google Scholar]
  40. Meyer E., Cole G., Radhakrishnan R., Epp O. Structure of native porcine pancreatic elastase at 1.65 A resolutions. Acta Crystallogr B. 1988 Feb 1;44(Pt 1):26–38. doi: 10.1107/s0108768187007559. [DOI] [PubMed] [Google Scholar]
  41. Ni F., Konishi Y., Bullock L. D., Rivetna M. N., Scheraga H. A. High-resolution NMR studies of fibrinogen-like peptides in solution: structural basis for the bleeding disorder caused by a single mutation of Gly(12) to Val(12) in the A alpha chain of human fibrinogen Rouen. Biochemistry. 1989 Apr 4;28(7):3106–3119. doi: 10.1021/bi00433a054. [DOI] [PubMed] [Google Scholar]
  42. Noé G., Hofsteenge J., Rovelli G., Stone S. R. The use of sequence-specific antibodies to identify a secondary binding site in thrombin. J Biol Chem. 1988 Aug 25;263(24):11729–11735. [PubMed] [Google Scholar]
  43. Owen M. C., Brennan S. O., Lewis J. H., Carrell R. W. Mutation of antitrypsin to antithrombin. alpha 1-antitrypsin Pittsburgh (358 Met leads to Arg), a fatal bleeding disorder. N Engl J Med. 1983 Sep 22;309(12):694–698. doi: 10.1056/NEJM198309223091203. [DOI] [PubMed] [Google Scholar]
  44. Rosenberg R. D., Damus P. S. The purification and mechanism of action of human antithrombin-heparin cofactor. J Biol Chem. 1973 Sep 25;248(18):6490–6505. [PubMed] [Google Scholar]
  45. Rossmann M. G., Argos P. A comparison of the heme binding pocket in globins and cytochrome b5. J Biol Chem. 1975 Sep 25;250(18):7525–7532. [PubMed] [Google Scholar]
  46. Shuman M. A. Thrombin-cellular interactions. Ann N Y Acad Sci. 1986;485:228–239. doi: 10.1111/j.1749-6632.1986.tb34585.x. [DOI] [PubMed] [Google Scholar]
  47. Skrzypczak-Jankun E., Rydel T. J., Tulinsky A., Fenton J. W., 2nd, Mann K. G. Human D-Phe-Pro-Arg-CH2-alpha-thrombin crystallization and diffraction data. J Mol Biol. 1989 Apr 20;206(4):755–757. doi: 10.1016/0022-2836(89)90582-2. [DOI] [PubMed] [Google Scholar]
  48. Sonder S. A., Fenton J. W., 2nd Proflavin binding within the fibrinopeptide groove adjacent to the catalytic site of human alpha-thrombin. Biochemistry. 1984 Apr 10;23(8):1818–1823. doi: 10.1021/bi00303a037. [DOI] [PubMed] [Google Scholar]
  49. Stone S. R., Braun P. J., Hofsteenge J. Identification of regions of alpha-thrombin involved in its interaction with hirudin. Biochemistry. 1987 Jul 28;26(15):4617–4624. doi: 10.1021/bi00389a004. [DOI] [PubMed] [Google Scholar]
  50. Thompson A. R., Enfield D. L., Ericsson L. H., Legaz M. E., Fenton JW I. I. Human thrombin: partial primary structure. Arch Biochem Biophys. 1977 Jan 30;178(2):356–367. doi: 10.1016/0003-9861(77)90204-1. [DOI] [PubMed] [Google Scholar]
  51. Tsernoglou D., Walz D. A., McCoy L. E., Seegers W. H. Communication: An x-ray crystallographic study of thrombin. J Biol Chem. 1974 Feb 10;249(3):999–999. [PubMed] [Google Scholar]
  52. Tsukada H., Blow D. M. Structure of alpha-chymotrypsin refined at 1.68 A resolution. J Mol Biol. 1985 Aug 20;184(4):703–711. doi: 10.1016/0022-2836(85)90314-6. [DOI] [PubMed] [Google Scholar]
  53. Vali Z., Scheraga H. A. Localization of the binding site on fibrin for the secondary binding site of thrombin. Biochemistry. 1988 Mar 22;27(6):1956–1963. doi: 10.1021/bi00406a023. [DOI] [PubMed] [Google Scholar]
  54. Walz D. A., Hewett-Emmett D., Seegers W. H. Amino acid sequence of human prothrombin fragments 1 and 2. Proc Natl Acad Sci U S A. 1977 May;74(5):1969–1972. doi: 10.1073/pnas.74.5.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Wang D., Bode W., Huber R. Bovine chymotrypsinogen A X-ray crystal structure analysis and refinement of a new crystal form at 1.8 A resolution. J Mol Biol. 1985 Oct 5;185(3):595–624. doi: 10.1016/0022-2836(85)90074-9. [DOI] [PubMed] [Google Scholar]
  56. Wei A. Z., Mayr I., Bode W. The refined 2.3 A crystal structure of human leukocyte elastase in a complex with a valine chloromethyl ketone inhibitor. FEBS Lett. 1988 Jul 18;234(2):367–373. doi: 10.1016/0014-5793(88)80118-2. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES