Abstract
The synthetic oligosaccharide moiety of the antibiotic calicheamicin and the head-to-head dimer of this oligosaccharide are known to bind to the minor groove of DNA in a sequence-selective manner preferring distinct target sequences. We tested these carbohydrates for their ability to interfere with transcription factor function. The oligosaccharides inhibit binding of transcription factors to DNA in a sequence-selective manner, probably by inducing a conformational change in DNA structure. They also interfere with transcription by polymerase II in vitro. The effective concentrations of the oligosaccharides for inhibition of transcription factor binding and for transcriptional inhibition are in the micromolar range. The dimer is a significantly more active inhibitor than is the monomer.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Borgmeyer U., Nowock J., Sippel A. E. The TGGCA-binding protein: a eukaryotic nuclear protein recognizing a symmetrical sequence on double-stranded linear DNA. Nucleic Acids Res. 1984 May 25;12(10):4295–4311. doi: 10.1093/nar/12.10.4295. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Celada A., Shiga M., Imagawa M., Kop J., Maki R. A. Identification of a nuclear factor that binds to a conserved sequence of the I-A beta gene. J Immunol. 1988 Jun 1;140(11):3995–4002. [PubMed] [Google Scholar]
- Chiang S. Y., Welch J., Rauscher F. J., 3rd, Beerman T. A. Effects of minor groove binding drugs on the interaction of TATA box binding protein and TFIIA with DNA. Biochemistry. 1994 Jun 14;33(23):7033–7040. doi: 10.1021/bi00189a003. [DOI] [PubMed] [Google Scholar]
- Dignam J. D., Lebovitz R. M., Roeder R. G. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983 Mar 11;11(5):1475–1489. doi: 10.1093/nar/11.5.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dorn A., Affolter M., Müller M., Gehring W. J., Leupin W. Distamycin-induced inhibition of homeodomain-DNA complexes. EMBO J. 1992 Jan;11(1):279–286. doi: 10.1002/j.1460-2075.1992.tb05050.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fowlkes D. M., Mullis N. T., Comeau C. M., Crabtree G. R. Potential basis for regulation of the coordinately expressed fibrinogen genes: homology in the 5' flanking regions. Proc Natl Acad Sci U S A. 1984 Apr;81(8):2313–2316. doi: 10.1073/pnas.81.8.2313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ho S. N., Boyer S. H., Schreiber S. L., Danishefsky S. J., Crabtree G. R. Specific inhibition of formation of transcription complexes by a calicheamicin oligosaccharide: a paradigm for the development of transcriptional antagonists. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9203–9207. doi: 10.1073/pnas.91.20.9203. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hocke G. M., Barry D., Fey G. H. Synergistic action of interleukin-6 and glucocorticoids is mediated by the interleukin-6 response element of the rat alpha 2 macroglobulin gene. Mol Cell Biol. 1992 May;12(5):2282–2294. doi: 10.1128/mcb.12.5.2282. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huber P., Laurent M., Dalmon J. Human beta-fibrinogen gene expression. Upstream sequences involved in its tissue specific expression and its dexamethasone and interleukin 6 stimulation. J Biol Chem. 1990 Apr 5;265(10):5695–5701. [PubMed] [Google Scholar]
- Kedzierski W., Porter J. C. A novel non-enzymatic procedure for removing DNA template from RNA transcription mixtures. Biotechniques. 1991 Feb;10(2):210–214. [PubMed] [Google Scholar]
- Klemsz M. J., McKercher S. R., Celada A., Van Beveren C., Maki R. A. The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell. 1990 Apr 6;61(1):113–124. doi: 10.1016/0092-8674(90)90219-5. [DOI] [PubMed] [Google Scholar]
- Liu C., Mason W. S., Burch J. B. Identification of factor-binding sites in the duck hepatitis B virus enhancer and in vivo effects of enhancer mutations. J Virol. 1994 Apr;68(4):2286–2296. doi: 10.1128/jvi.68.4.2286-2296.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tsuchiya Y., Hattori M., Hayashida K., Ishibashi H., Okubo H., Sakaki Y. Sequence analysis of the putative regulatory region of rat alpha 2-macroglobulin gene. Gene. 1987;57(1):73–80. doi: 10.1016/0378-1119(87)90178-8. [DOI] [PubMed] [Google Scholar]
- Uesugi M., Sugiura Y. New insights into sequence recognition process of esperamicin A1 and calicheamicin gamma 1I.: origin of their selectivities and "induced fit" mechanism. Biochemistry. 1993 May 4;32(17):4622–4627. doi: 10.1021/bi00068a020. [DOI] [PubMed] [Google Scholar]
- Wegenka U. M., Buschmann J., Lütticken C., Heinrich P. C., Horn F. Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level. Mol Cell Biol. 1993 Jan;13(1):276–288. doi: 10.1128/mcb.13.1.276. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zein N., Sinha A. M., McGahren W. J., Ellestad G. A. Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science. 1988 May 27;240(4856):1198–1201. doi: 10.1126/science.3240341. [DOI] [PubMed] [Google Scholar]
- Zhong Z., Wen Z., Darnell J. E., Jr Stat3 and Stat4: members of the family of signal transducers and activators of transcription. Proc Natl Acad Sci U S A. 1994 May 24;91(11):4806–4810. doi: 10.1073/pnas.91.11.4806. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Zhong Z., Wen Z., Darnell J. E., Jr Stat3: a STAT family member activated by tyrosine phosphorylation in response to epidermal growth factor and interleukin-6. Science. 1994 Apr 1;264(5155):95–98. doi: 10.1126/science.8140422. [DOI] [PubMed] [Google Scholar]