Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jan 9;93(1):121–125. doi: 10.1073/pnas.93.1.121

Influence of alkyltransferase activity and chromosomal locus on mutational hotspots in Chinese hamster ovary cells.

A Belouchi 1, M Ouimet 1, P Dion 1, N Gaudreault 1, W E Bradley 1
PMCID: PMC40190  PMID: 8552587

Abstract

High-density mutational spectra have been established for exon 3 of the gene encoding adenine phosphoribosyltransferase (APRT) of the Chinese hamster ovary (CHO) cell line derivative D422 and closely related and/or modified lines by using the mutagen ethyl methanesulfonate (EMS). The total number of selectable sites (GC-->AT transitions yielding a selectable APRT- phenotype) was estimated at 31 based on our own accumulated data base of 136 sequenced exon 3 mutations and on literature reports. D422 and two other APRT hemizygous lines each yielded very similar spectra and showed two populations of mutable sites: (i) 24 "baseline" sites that followed the Poisson distribution and therefore were equally susceptible to mutation and (ii) two hotspots, one comprising a cluster at nucleotides 1293-1309 and the other at nucleotide 1365. Collectively, the latter sites were about 10-fold more frequently mutated than the others. CHO cells are mer- as they lack the repair enzyme O6-methylguanidine methyltransferase (EC 2.1.1.63). In modified repair-proficient CHO cells, the distribution of mutations among all of the 31 sites was random, with only 3 of the 19 GC-->AT transitions in the above hotspots. To determine whether the distribution was locus-dependent, two independent lines carrying single copies of transfected APRT genes were generated from a derivative of D422 carrying a deletion in the endogenous APRT gene. Nucleotides 1293-1309 were again no longer preferentially mutated, but the site at nucleotide 1365 was still a hotspot. We conclude that mutational spectra in mer- cells are at least in part locus dependent and that some sequences are particularly susceptible to EMS mutagenesis and perhaps also to methyltransferase repair.

Full text

PDF
121

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aquilina G., Biondo R., Dogliotti E., Meuth M., Bignami M. Expression of the endogenous O6-methylguanine-DNA-methyltransferase protects Chinese hamster ovary cells from spontaneous G:C to A:T transitions. Cancer Res. 1992 Dec 1;52(23):6471–6475. [PubMed] [Google Scholar]
  2. Ashman C. R. DNA base sequence changes in spontaneous and ethyl methanesulfonate-induced mutations of a chromosomally-integrated gene in Chinese hamster ovary cells. Mutat Res. 1992 Nov 16;270(2):115–124. doi: 10.1016/0027-5107(92)90122-i. [DOI] [PubMed] [Google Scholar]
  3. Beecham E. J., Mushinski J. F., Shacter E., Potter M., Bohr V. A. DNA repair in the c-myc proto-oncogene locus: possible involvement in susceptibility or resistance to plasmacytoma induction in BALB/c mice. Mol Cell Biol. 1991 Jun;11(6):3095–3104. doi: 10.1128/mcb.11.6.3095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Belouchi A., Bradley W. E. A mutational hotspot in the aprt gene of Chinese hamster cells. Mutat Res. 1992 Apr;266(2):221–230. doi: 10.1016/0027-5107(92)90190-d. [DOI] [PubMed] [Google Scholar]
  5. Belouchi A., Bradley W. E. Analysis of second-step mutations of class II and class III CHO aprt heterozygotes: chromosomal differences in deletion frequencies. Somat Cell Mol Genet. 1991 May;17(3):277–286. doi: 10.1007/BF01232822. [DOI] [PubMed] [Google Scholar]
  6. Bradley W. E., Laviolette F. Low persistence of the induced mutant phenotype in Chinese hamster cells. Mutat Res. 1989 Feb;210(2):303–311. doi: 10.1016/0027-5107(89)90091-2. [DOI] [PubMed] [Google Scholar]
  7. Bradley W. E., Letovanec D. High-frequency nonrandom mutational event at the adenine phosphoribosyltransferase (aprt) locus of sib-selected CHO variants heterozygous for aprt. Somatic Cell Genet. 1982 Jan;8(1):51–66. doi: 10.1007/BF01538650. [DOI] [PubMed] [Google Scholar]
  8. Bronstein S. M., Cochrane J. E., Craft T. R., Swenberg J. A., Skopek T. R. Toxicity, mutagenicity, and mutational spectra of N-ethyl-N-nitrosourea in human cell lines with different DNA repair phenotypes. Cancer Res. 1991 Oct 1;51(19):5188–5197. [PubMed] [Google Scholar]
  9. Burns P. A., Gordon A. J., Glickman B. W. Influence of neighbouring base sequence on N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis in the lacI gene of Escherichia coli. J Mol Biol. 1987 Apr 5;194(3):385–390. doi: 10.1016/0022-2836(87)90668-1. [DOI] [PubMed] [Google Scholar]
  10. Chasin L. A. Mutations affecting adenine phosphoribosyl transferase activity in Chinese hamster cells. Cell. 1974 May;2(1):37–41. doi: 10.1016/0092-8674(74)90006-3. [DOI] [PubMed] [Google Scholar]
  11. Colbère-Garapin F., Horodniceanu F., Kourilsky P., Garapin A. C. A new dominant hybrid selective marker for higher eukaryotic cells. J Mol Biol. 1981 Jul 25;150(1):1–14. doi: 10.1016/0022-2836(81)90321-1. [DOI] [PubMed] [Google Scholar]
  12. Day R. S., 3rd, Ziolkowski C. H., Scudiero D. A., Meyer S. A., Lubiniecki A. S., Girardi A. J., Galloway S. M., Bynum G. D. Defective repair of alkylated DNA by human tumour and SV40-transformed human cell strains. Nature. 1980 Dec 25;288(5792):724–727. doi: 10.1038/288724a0. [DOI] [PubMed] [Google Scholar]
  13. Dickerson R. E. Base sequence and helix structure variation in B and A DNA. J Mol Biol. 1983 May 25;166(3):419–441. doi: 10.1016/s0022-2836(83)80093-x. [DOI] [PubMed] [Google Scholar]
  14. Elia M. C., Bradley M. O. Influence of chromatin structure on the induction of DNA double strand breaks by ionizing radiation. Cancer Res. 1992 Mar 15;52(6):1580–1586. [PubMed] [Google Scholar]
  15. Graves R. J., Li B. F., Swann P. F. Repair of O6-methylguanine, O6-ethylguanine, O6-isopropylguanine and O4-methylthymine in synthetic oligodeoxynucleotides by Escherichia coli ada gene O6-alkylguanine-DNA-alkyltransferase. Carcinogenesis. 1989 Apr;10(4):661–666. doi: 10.1093/carcin/10.4.661. [DOI] [PubMed] [Google Scholar]
  16. Horsfall M. J., Glickman B. W. Mutation site specificity of N-nitroso-N-methyl-N-alpha-acetoxybenzylamine: a model derivative of an esophageal carcinogen. Carcinogenesis. 1988 Sep;9(9):1529–1532. doi: 10.1093/carcin/9.9.1529. [DOI] [PubMed] [Google Scholar]
  17. Huang J. C., Hsu D. S., Kazantsev A., Sancar A. Substrate spectrum of human excinuclease: repair of abasic sites, methylated bases, mismatches, and bulky adducts. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12213–12217. doi: 10.1073/pnas.91.25.12213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Kaina B., Fritz G., Mitra S., Coquerelle T. Transfection and expression of human O6-methylguanine-DNA methyltransferase (MGMT) cDNA in Chinese hamster cells: the role of MGMT in protection against the genotoxic effects of alkylating agents. Carcinogenesis. 1991 Oct;12(10):1857–1867. doi: 10.1093/carcin/12.10.1857. [DOI] [PubMed] [Google Scholar]
  19. Kat A. G., Thilly W. G. Mutational spectra of endogenous genes in mammalian cells. IARC Sci Publ. 1994;(125):371–383. [PubMed] [Google Scholar]
  20. Lindahl T., Sedgwick B., Sekiguchi M., Nakabeppu Y. Regulation and expression of the adaptive response to alkylating agents. Annu Rev Biochem. 1988;57:133–157. doi: 10.1146/annurev.bi.57.070188.001025. [DOI] [PubMed] [Google Scholar]
  21. Loveless A. Possible relevance of O-6 alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides. Nature. 1969 Jul 12;223(5202):206–207. doi: 10.1038/223206a0. [DOI] [PubMed] [Google Scholar]
  22. May A., Nairn R. S., Okumoto D. S., Wassermann K., Stevnsner T., Jones J. C., Bohr V. A. Repair of individual DNA strands in the hamster dihydrofolate reductase gene after treatment with ultraviolet light, alkylating agents, and cisplatin. J Biol Chem. 1993 Jan 25;268(3):1650–1657. [PubMed] [Google Scholar]
  23. Mazur M., Glickman B. W. Sequence specificity of mutations induced by benzo[a]pyrene-7,8-diol-9,10-epoxide at endogenous aprt gene in CHO cells. Somat Cell Mol Genet. 1988 Jul;14(4):393–400. doi: 10.1007/BF01534647. [DOI] [PubMed] [Google Scholar]
  24. Minnick D. T., Gerson S. L., Dumenco L. L., Veigl M. L., Sedwick W. D. Specificity of bischloroethylnitrosourea-induced mutation in a Chinese hamster ovary cell line transformed to express human O6-alkylguanine-DNA alkyltransferase. Cancer Res. 1993 Mar 1;53(5):997–1003. [PubMed] [Google Scholar]
  25. Minnick D. T., Veigl M. L., Sedwick W. D. Mutational specificity of 1,3-bis-(2-chloroethyl)-1-nitrosourea in a Chinese hamster ovary cell line. Cancer Res. 1992 Sep 1;52(17):4688–4695. [PubMed] [Google Scholar]
  26. Mullenders L. H., van Kesteren van Leeuwen A. C., van Zeeland A. A., Natarajan A. T. Nuclear matrix associated DNA is preferentially repaired in normal human fibroblasts, exposed to a low dose of ultraviolet light but not in Cockayne's syndrome fibroblasts. Nucleic Acids Res. 1988 Nov 25;16(22):10607–10622. doi: 10.1093/nar/16.22.10607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Orita M., Suzuki Y., Sekiya T., Hayashi K. Rapid and sensitive detection of point mutations and DNA polymorphisms using the polymerase chain reaction. Genomics. 1989 Nov;5(4):874–879. doi: 10.1016/0888-7543(89)90129-8. [DOI] [PubMed] [Google Scholar]
  28. Pienkowska M., Glickman B. W., Ferreira A., Anderson M., Zielenska M. Large-scale mutational analysis of EMS-induced mutation in the lacI gene of Escherichia coli. Mutat Res. 1993 Jul;288(1):123–131. doi: 10.1016/0027-5107(93)90214-z. [DOI] [PubMed] [Google Scholar]
  29. Sargent G., Phear G., Meuth M. Deletion formation in mammalian cells: molecular analysis of breakpoints and junctions in the hamster aprt locus. New Biol. 1989 Nov;1(2):205–213. [PubMed] [Google Scholar]
  30. Sassanfar M., Dosanjh M. K., Essigmann J. M., Samson L. Relative efficiencies of the bacterial, yeast, and human DNA methyltransferases for the repair of O6-methylguanine and O4-methylthymine. Suggestive evidence for O4-methylthymine repair by eukaryotic methyltransferases. J Biol Chem. 1991 Feb 15;266(5):2767–2771. [PubMed] [Google Scholar]
  31. Stamato T. D., Weinstein R., Giaccia A. Timing of mutation-fixation events in ethyl methane sulfonate-treated Chinese hamster cells. Somat Cell Mol Genet. 1984 Jul;10(4):429–434. doi: 10.1007/BF01535639. [DOI] [PubMed] [Google Scholar]
  32. Swann P. F. Why do O6-alkylguanine and O4-alkylthymine miscode? The relationship between the structure of DNA containing O6-alkylguanine and O4-alkylthymine and the mutagenic properties of these bases. Mutat Res. 1990 Nov-Dec;233(1-2):81–94. doi: 10.1016/0027-5107(90)90153-u. [DOI] [PubMed] [Google Scholar]
  33. Tasseron-de Jong J. G., den Dulk H., Lichtenauer-Kaligis E. G., Kroone R. C., Giphart-Gassler M., van de Putte P. Mutation induction by UV light in retroviral hprt cDNA integrated at various chromosomal positions in repair-deficient hamster cells. Mutagenesis. 1993 Sep;8(5):399–406. doi: 10.1093/mutage/8.5.399. [DOI] [PubMed] [Google Scholar]
  34. Topal M. D., Eadie J. S., Conrad M. O6-methylguanine mutation and repair is nonuniform. Selection for DNA most interactive with O6-methylguanine. J Biol Chem. 1986 Jul 25;261(21):9879–9885. [PubMed] [Google Scholar]
  35. Yang J. L., Chen R. H., Maher V. M., McCormick J. J. Kinds and location of mutations induced by (+/-)-7 beta,8 alpha-dihydroxy-9 alpha,10 alpha-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene in the coding region of the hypoxanthine (guanine) phosphoribosyltransferase gene in diploid human fibroblasts. Carcinogenesis. 1991 Jan;12(1):71–75. doi: 10.1093/carcin/12.1.71. [DOI] [PubMed] [Google Scholar]
  36. Yang J. L., Hsieh F. P., Lee P. C., Tseng H. J. Strand- and sequence-specific attenuation of N-methyl-N'-nitro-N-nitrosoguanidine-induced G.C to A.T transitions by expression of human 6-methylguanine-DNA methyltransferase in Chinese hamster ovary cells. Cancer Res. 1994 Jul 15;54(14):3857–3863. [PubMed] [Google Scholar]
  37. de Boer J. G., Glickman B. W. Mutational analysis of the structure and function of the adenine phosphoribosyltransferase enzyme of Chinese hamster. J Mol Biol. 1991 Sep 5;221(1):163–174. doi: 10.1016/0022-2836(91)80212-d. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES