Abstract
DNA was extracted from the remains of 35 ground sloths from various parts of North and South America. Two specimens of Mylodon darwinii, a species that went extinct at the end of the last glaciation, yielded amplifiable DNA. However, of the total DNA extracted, only approximately 1/1000 originated from the sloth, whereas a substantial part of the remainder was of bacterial and fungal origin. In spite of this, > 1100 bp of sloth mitochondrial rDNA sequences could be reconstructed from short amplification products. Phylogenetic analyses using homologous sequences from all extant edentate groups suggest that Mylodon darwinii was more closely related to the two-toed than the three-toed sloths and, thus, that an arboreal life-style has evolved at least twice among sloths. The divergence of Mylodon and the two-toed sloth furthermore allows a date for the radiation of armadillos, anteaters, and sloths to be estimated. This result shows that the edentates differ from other mammalian orders in that they contain lineages that diverged before the end of the Cretaceous Period.
Full text
PDFImages in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
- Cao Y., Adachi J., Hasegawa M. Eutherian phylogeny as inferred from mitochondrial DNA sequence data. Jpn J Genet. 1994 Oct;69(5):455–472. doi: 10.1266/jjg.69.455. [DOI] [PubMed] [Google Scholar]
- Felsenstein J. Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol. 1981;17(6):368–376. doi: 10.1007/BF01734359. [DOI] [PubMed] [Google Scholar]
- Hagelberg E., Thomas M. G., Cook C. E., Jr, Sher A. V., Baryshnikov G. F., Lister A. M. DNA from ancient mammoth bones. Nature. 1994 Aug 4;370(6488):333–334. doi: 10.1038/370333b0. [DOI] [PubMed] [Google Scholar]
- Handt O., Höss M., Krings M., Päbo S. Ancient DNA: methodological challenges. Experientia. 1994 Jun 15;50(6):524–529. doi: 10.1007/BF01921720. [DOI] [PubMed] [Google Scholar]
- Hasegawa M., Hashimoto T. Ribosomal RNA trees misleading? Nature. 1993 Jan 7;361(6407):23–23. doi: 10.1038/361023b0. [DOI] [PubMed] [Google Scholar]
- Hauf J., Baur A., Chalwatzis N., Zimmermann F. K., Joger U., Lazarev P. A. Selective amplification of a mammoth mitochondrial cytochrome b fragment using an elephant-specific primer. Curr Genet. 1995 Apr;27(5):486–487. doi: 10.1007/BF00311220. [DOI] [PubMed] [Google Scholar]
- Höss M., Päbo S. DNA extraction from Pleistocene bones by a silica-based purification method. Nucleic Acids Res. 1993 Aug 11;21(16):3913–3914. doi: 10.1093/nar/21.16.3913. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Höss M., Päbo S., Vereshchagin N. K. Mammoth DNA sequences. Nature. 1994 Aug 4;370(6488):333–333. doi: 10.1038/370333a0. [DOI] [PubMed] [Google Scholar]
- Janke A., Feldmaier-Fuchs G., Thomas W. K., von Haeseler A., Päbo S. The marsupial mitochondrial genome and the evolution of placental mammals. Genetics. 1994 May;137(1):243–256. doi: 10.1093/genetics/137.1.243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Janzen D. H., Martin P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science. 1982 Jan 1;215(4528):19–27. doi: 10.1126/science.215.4528.19. [DOI] [PubMed] [Google Scholar]
- Lindahl T. Instability and decay of the primary structure of DNA. Nature. 1993 Apr 22;362(6422):709–715. doi: 10.1038/362709a0. [DOI] [PubMed] [Google Scholar]
- Lindahl T., Nyberg B. Rate of depurination of native deoxyribonucleic acid. Biochemistry. 1972 Sep 12;11(19):3610–3618. doi: 10.1021/bi00769a018. [DOI] [PubMed] [Google Scholar]
- Lindahl T. Recovery of antediluvian DNA. Nature. 1993 Oct 21;365(6448):700–700. doi: 10.1038/365700a0. [DOI] [PubMed] [Google Scholar]
- Long A., Martin P. S. Death of american ground sloths. Science. 1974 Nov 15;186(4164):638–640. doi: 10.1126/science.186.4164.638. [DOI] [PubMed] [Google Scholar]
- Miller S. A., Dykes D. D., Polesky H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988 Feb 11;16(3):1215–1215. doi: 10.1093/nar/16.3.1215. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Päbo S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A. 1989 Mar;86(6):1939–1943. doi: 10.1073/pnas.86.6.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Päbo S., Higuchi R. G., Wilson A. C. Ancient DNA and the polymerase chain reaction. The emerging field of molecular archaeology. J Biol Chem. 1989 Jun 15;264(17):9709–9712. [PubMed] [Google Scholar]
- Päbo S., Wilson A. C. Miocene DNA sequences - a dream come true? Curr Biol. 1991 Feb;1(1):45–46. doi: 10.1016/0960-9822(91)90125-g. [DOI] [PubMed] [Google Scholar]
- Saitou N., Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987 Jul;4(4):406–425. doi: 10.1093/oxfordjournals.molbev.a040454. [DOI] [PubMed] [Google Scholar]