Abstract
A key event in ribosomal protein synthesis is the translocation of deacylated tRNA, peptidyl tRNA and mRNA, which is catalyzed by elongation factor G (EF-G) and requires GTP. To address the molecular mechanism of the reaction we have studied the functional role of a tRNA exit site (E site) for tRNA release during translocation. We show that modifications of the 3' end of tRNAPhe, which considerably decrease the affinity of E-site binding, lower the translocation rate up to 40-fold. Furthermore, 3'-end modifications lower or abolish the stimulation by P site-bound tRNA of the GTPase activity of EF-G on the ribosome. The results suggest that a hydrogen-bonding interaction of the 3'-terminal adenine of the leaving tRNA in the E site, most likely base-pairing with 23S rRNA, is essential for the translocation reaction. Furthermore, this interaction stimulates the GTP hydrolyzing activity of EF-G on the ribosome. We propose the following molecular model of translocation: after the binding of EF-G.GTP, the P site-bound tRNA, by a movement of the 3'-terminal single-stranded ACCA tail, establishes an interaction with 23S rRNA in the adjacent E site, thereby initiating the tRNA transfer from the P site to the E site and promoting GTP hydrolysis. The co-operative interaction between the E site and the EF-G binding site, which are distantly located on the 50S ribosomal subunit, is probably mediated by a conformational change of 23S rRNA.
Full text
PDF





Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Branlant C., Krol A., Sriwdada J., Ebel J. P., Sloof P., Garrett R. A. The binding site of protein L1 ON 23-S ribosomal RNA of Escherichia coli. 2. Identification of the rna region contained in the L1 ribonucleoproteins and determination of the order of the RNA subfragments within this region. Eur J Biochem. 1976 Nov 15;70(2):457–469. doi: 10.1111/j.1432-1033.1976.tb11037.x. [DOI] [PubMed] [Google Scholar]
- Chinali G., Parmeggiani A. Differential modulation of the elongation-factor-G GTPase activity by tRNA bound to the ribosomal A-site or P-site. Eur J Biochem. 1982 Jul;125(2):415–421. doi: 10.1111/j.1432-1033.1982.tb06699.x. [DOI] [PubMed] [Google Scholar]
- Dahlberg A. E. The functional role of ribosomal RNA in protein synthesis. Cell. 1989 May 19;57(4):525–529. doi: 10.1016/0092-8674(89)90122-0. [DOI] [PubMed] [Google Scholar]
- Girshovich A. S., Bochkareva E. S., Gudkov A. T. Specific interaction of the elongation factor EF-G with the ribosomal 23 S RNA from Escherichia coli. FEBS Lett. 1982 Dec 13;150(1):99–102. doi: 10.1016/0014-5793(82)81312-4. [DOI] [PubMed] [Google Scholar]
- Girshovich A. S., Kurtskhalia T. V., Ovchinnikov YuA, Vasiliev V. D. Localization of the elongation factor G on Escherichia coli ribosome. FEBS Lett. 1981 Jul 20;130(1):54–59. doi: 10.1016/0014-5793(81)80664-3. [DOI] [PubMed] [Google Scholar]
- Grajevskaja R. A., Ivanov Y. V., Saminsky E. M. 70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. Eur J Biochem. 1982 Nov;128(1):47–52. doi: 10.1111/j.1432-1033.1982.tb06929.x. [DOI] [PubMed] [Google Scholar]
- Hausner T. P., Atmadja J., Nierhaus K. H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie. 1987 Sep;69(9):911–923. doi: 10.1016/0300-9084(87)90225-2. [DOI] [PubMed] [Google Scholar]
- Kirillov S. V., Makarov E. M., Semenkov YuP Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes. Role of 50 S subunits in formation of the E site. FEBS Lett. 1983 Jun 27;157(1):91–94. doi: 10.1016/0014-5793(83)81122-3. [DOI] [PubMed] [Google Scholar]
- Lill R., Lepier A., Schwägele F., Sprinzl M., Vogt H., Wintermeyer W. Specific recognition of the 3'-terminal adenosine of tRNAPhe in the exit site of Escherichia coli ribosomes. J Mol Biol. 1988 Oct 5;203(3):699–705. doi: 10.1016/0022-2836(88)90203-3. [DOI] [PubMed] [Google Scholar]
- Lill R., Robertson J. M., Wintermeyer W. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Biochemistry. 1986 Jun 3;25(11):3245–3255. doi: 10.1021/bi00359a025. [DOI] [PubMed] [Google Scholar]
- Lill R., Robertson J. M., Wintermeyer W. tRNA binding sites of ribosomes from Escherichia coli. Biochemistry. 1984 Dec 18;23(26):6710–6717. doi: 10.1021/bi00321a066. [DOI] [PubMed] [Google Scholar]
- Lill R., Wintermeyer W. Destabilization of codon-anticodon interaction in the ribosomal exit site. J Mol Biol. 1987 Jul 5;196(1):137–148. doi: 10.1016/0022-2836(87)90516-x. [DOI] [PubMed] [Google Scholar]
- Moazed D., Noller H. F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell. 1989 May 19;57(4):585–597. doi: 10.1016/0092-8674(89)90128-1. [DOI] [PubMed] [Google Scholar]
- Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
- Moore P. B. The ribosome returns. Nature. 1988 Jan 21;331(6153):223–227. doi: 10.1038/331223a0. [DOI] [PubMed] [Google Scholar]
- Noll H. Chain initiation and control of protein synthesis. Science. 1966 Mar 11;151(3715):1241–1245. doi: 10.1126/science.151.3715.1241. [DOI] [PubMed] [Google Scholar]
- Paulsen H., Wintermeyer W. tRNA topography during translocation: steady-state and kinetic fluorescence energy-transfer studies. Biochemistry. 1986 May 20;25(10):2749–2756. doi: 10.1021/bi00358a002. [DOI] [PubMed] [Google Scholar]
- Rheinberger H. J., Nierhaus K. H. Adjacent codon-anticodon interactions of both tRNAs present at the ribosomal A and P or P and E sites. FEBS Lett. 1986 Aug 11;204(1):97–99. doi: 10.1016/0014-5793(86)81393-x. [DOI] [PubMed] [Google Scholar]
- Rheinberger H. J., Nierhaus K. H. Testing an alternative model for the ribosomal peptide elongation cycle. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4213–4217. doi: 10.1073/pnas.80.14.4213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rheinberger H. J., Sternbach H., Nierhaus K. H. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5310–5314. doi: 10.1073/pnas.78.9.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Robertson J. M., Paulsen H., Wintermeyer W. Pre-steady-state kinetics of ribosomal translocation. J Mol Biol. 1986 Nov 20;192(2):351–360. doi: 10.1016/0022-2836(86)90370-0. [DOI] [PubMed] [Google Scholar]
- Robertson J. M., Wintermeyer W. Effect of translocation on topology and conformation of anticodon and D loops of tRNAPhe. J Mol Biol. 1981 Sep 5;151(1):57–79. doi: 10.1016/0022-2836(81)90221-7. [DOI] [PubMed] [Google Scholar]
- Robertson J. M., Wintermeyer W. Mechanism of ribosomal translocation. tRNA binds transiently to an exit site before leaving the ribosome during translocation. J Mol Biol. 1987 Aug 5;196(3):525–540. doi: 10.1016/0022-2836(87)90030-1. [DOI] [PubMed] [Google Scholar]
- Sköld S. E. Chemical crosslinking of elongation factor G to the 23S RNA in 70S ribosomes from Escherichia coli. Nucleic Acids Res. 1983 Jul 25;11(14):4923–4932. doi: 10.1093/nar/11.14.4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Spirin A. S. Ribosomal translocation: facts and models. Prog Nucleic Acid Res Mol Biol. 1985;32:75–114. doi: 10.1016/s0079-6603(08)60346-3. [DOI] [PubMed] [Google Scholar]
- Sussman J. L., Holbrook S. R., Warrant R. W., Church G. M., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol. 1978 Aug 25;123(4):607–630. doi: 10.1016/0022-2836(78)90209-7. [DOI] [PubMed] [Google Scholar]
- Wagner T., Sprinzl M. Inhibition of ribosomal translocation by peptidyl transfer ribonucleic acid analogues. Biochemistry. 1983 Jan 4;22(1):94–98. doi: 10.1021/bi00270a013. [DOI] [PubMed] [Google Scholar]