Skip to main content
The EMBO Journal logoLink to The EMBO Journal
. 1989 Dec 1;8(12):3933–3938. doi: 10.1002/j.1460-2075.1989.tb08574.x

Binding of the 3' terminus of tRNA to 23S rRNA in the ribosomal exit site actively promotes translocation.

R Lill 1, J M Robertson 1, W Wintermeyer 1
PMCID: PMC402085  PMID: 2583120

Abstract

A key event in ribosomal protein synthesis is the translocation of deacylated tRNA, peptidyl tRNA and mRNA, which is catalyzed by elongation factor G (EF-G) and requires GTP. To address the molecular mechanism of the reaction we have studied the functional role of a tRNA exit site (E site) for tRNA release during translocation. We show that modifications of the 3' end of tRNAPhe, which considerably decrease the affinity of E-site binding, lower the translocation rate up to 40-fold. Furthermore, 3'-end modifications lower or abolish the stimulation by P site-bound tRNA of the GTPase activity of EF-G on the ribosome. The results suggest that a hydrogen-bonding interaction of the 3'-terminal adenine of the leaving tRNA in the E site, most likely base-pairing with 23S rRNA, is essential for the translocation reaction. Furthermore, this interaction stimulates the GTP hydrolyzing activity of EF-G on the ribosome. We propose the following molecular model of translocation: after the binding of EF-G.GTP, the P site-bound tRNA, by a movement of the 3'-terminal single-stranded ACCA tail, establishes an interaction with 23S rRNA in the adjacent E site, thereby initiating the tRNA transfer from the P site to the E site and promoting GTP hydrolysis. The co-operative interaction between the E site and the EF-G binding site, which are distantly located on the 50S ribosomal subunit, is probably mediated by a conformational change of 23S rRNA.

Full text

PDF
3933

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Branlant C., Krol A., Sriwdada J., Ebel J. P., Sloof P., Garrett R. A. The binding site of protein L1 ON 23-S ribosomal RNA of Escherichia coli. 2. Identification of the rna region contained in the L1 ribonucleoproteins and determination of the order of the RNA subfragments within this region. Eur J Biochem. 1976 Nov 15;70(2):457–469. doi: 10.1111/j.1432-1033.1976.tb11037.x. [DOI] [PubMed] [Google Scholar]
  2. Chinali G., Parmeggiani A. Differential modulation of the elongation-factor-G GTPase activity by tRNA bound to the ribosomal A-site or P-site. Eur J Biochem. 1982 Jul;125(2):415–421. doi: 10.1111/j.1432-1033.1982.tb06699.x. [DOI] [PubMed] [Google Scholar]
  3. Dahlberg A. E. The functional role of ribosomal RNA in protein synthesis. Cell. 1989 May 19;57(4):525–529. doi: 10.1016/0092-8674(89)90122-0. [DOI] [PubMed] [Google Scholar]
  4. Girshovich A. S., Bochkareva E. S., Gudkov A. T. Specific interaction of the elongation factor EF-G with the ribosomal 23 S RNA from Escherichia coli. FEBS Lett. 1982 Dec 13;150(1):99–102. doi: 10.1016/0014-5793(82)81312-4. [DOI] [PubMed] [Google Scholar]
  5. Girshovich A. S., Kurtskhalia T. V., Ovchinnikov YuA, Vasiliev V. D. Localization of the elongation factor G on Escherichia coli ribosome. FEBS Lett. 1981 Jul 20;130(1):54–59. doi: 10.1016/0014-5793(81)80664-3. [DOI] [PubMed] [Google Scholar]
  6. Grajevskaja R. A., Ivanov Y. V., Saminsky E. M. 70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. Eur J Biochem. 1982 Nov;128(1):47–52. doi: 10.1111/j.1432-1033.1982.tb06929.x. [DOI] [PubMed] [Google Scholar]
  7. Hausner T. P., Atmadja J., Nierhaus K. H. Evidence that the G2661 region of 23S rRNA is located at the ribosomal binding sites of both elongation factors. Biochimie. 1987 Sep;69(9):911–923. doi: 10.1016/0300-9084(87)90225-2. [DOI] [PubMed] [Google Scholar]
  8. Kirillov S. V., Makarov E. M., Semenkov YuP Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes. Role of 50 S subunits in formation of the E site. FEBS Lett. 1983 Jun 27;157(1):91–94. doi: 10.1016/0014-5793(83)81122-3. [DOI] [PubMed] [Google Scholar]
  9. Lill R., Lepier A., Schwägele F., Sprinzl M., Vogt H., Wintermeyer W. Specific recognition of the 3'-terminal adenosine of tRNAPhe in the exit site of Escherichia coli ribosomes. J Mol Biol. 1988 Oct 5;203(3):699–705. doi: 10.1016/0022-2836(88)90203-3. [DOI] [PubMed] [Google Scholar]
  10. Lill R., Robertson J. M., Wintermeyer W. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Biochemistry. 1986 Jun 3;25(11):3245–3255. doi: 10.1021/bi00359a025. [DOI] [PubMed] [Google Scholar]
  11. Lill R., Robertson J. M., Wintermeyer W. tRNA binding sites of ribosomes from Escherichia coli. Biochemistry. 1984 Dec 18;23(26):6710–6717. doi: 10.1021/bi00321a066. [DOI] [PubMed] [Google Scholar]
  12. Lill R., Wintermeyer W. Destabilization of codon-anticodon interaction in the ribosomal exit site. J Mol Biol. 1987 Jul 5;196(1):137–148. doi: 10.1016/0022-2836(87)90516-x. [DOI] [PubMed] [Google Scholar]
  13. Moazed D., Noller H. F. Interaction of tRNA with 23S rRNA in the ribosomal A, P, and E sites. Cell. 1989 May 19;57(4):585–597. doi: 10.1016/0092-8674(89)90128-1. [DOI] [PubMed] [Google Scholar]
  14. Moazed D., Robertson J. M., Noller H. F. Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA. Nature. 1988 Jul 28;334(6180):362–364. doi: 10.1038/334362a0. [DOI] [PubMed] [Google Scholar]
  15. Moore P. B. The ribosome returns. Nature. 1988 Jan 21;331(6153):223–227. doi: 10.1038/331223a0. [DOI] [PubMed] [Google Scholar]
  16. Noll H. Chain initiation and control of protein synthesis. Science. 1966 Mar 11;151(3715):1241–1245. doi: 10.1126/science.151.3715.1241. [DOI] [PubMed] [Google Scholar]
  17. Paulsen H., Wintermeyer W. tRNA topography during translocation: steady-state and kinetic fluorescence energy-transfer studies. Biochemistry. 1986 May 20;25(10):2749–2756. doi: 10.1021/bi00358a002. [DOI] [PubMed] [Google Scholar]
  18. Rheinberger H. J., Nierhaus K. H. Adjacent codon-anticodon interactions of both tRNAs present at the ribosomal A and P or P and E sites. FEBS Lett. 1986 Aug 11;204(1):97–99. doi: 10.1016/0014-5793(86)81393-x. [DOI] [PubMed] [Google Scholar]
  19. Rheinberger H. J., Nierhaus K. H. Testing an alternative model for the ribosomal peptide elongation cycle. Proc Natl Acad Sci U S A. 1983 Jul;80(14):4213–4217. doi: 10.1073/pnas.80.14.4213. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rheinberger H. J., Sternbach H., Nierhaus K. H. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5310–5314. doi: 10.1073/pnas.78.9.5310. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Robertson J. M., Paulsen H., Wintermeyer W. Pre-steady-state kinetics of ribosomal translocation. J Mol Biol. 1986 Nov 20;192(2):351–360. doi: 10.1016/0022-2836(86)90370-0. [DOI] [PubMed] [Google Scholar]
  22. Robertson J. M., Wintermeyer W. Effect of translocation on topology and conformation of anticodon and D loops of tRNAPhe. J Mol Biol. 1981 Sep 5;151(1):57–79. doi: 10.1016/0022-2836(81)90221-7. [DOI] [PubMed] [Google Scholar]
  23. Robertson J. M., Wintermeyer W. Mechanism of ribosomal translocation. tRNA binds transiently to an exit site before leaving the ribosome during translocation. J Mol Biol. 1987 Aug 5;196(3):525–540. doi: 10.1016/0022-2836(87)90030-1. [DOI] [PubMed] [Google Scholar]
  24. Sköld S. E. Chemical crosslinking of elongation factor G to the 23S RNA in 70S ribosomes from Escherichia coli. Nucleic Acids Res. 1983 Jul 25;11(14):4923–4932. doi: 10.1093/nar/11.14.4923. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Spirin A. S. Ribosomal translocation: facts and models. Prog Nucleic Acid Res Mol Biol. 1985;32:75–114. doi: 10.1016/s0079-6603(08)60346-3. [DOI] [PubMed] [Google Scholar]
  26. Sussman J. L., Holbrook S. R., Warrant R. W., Church G. M., Kim S. H. Crystal structure of yeast phenylalanine transfer RNA. I. Crystallographic refinement. J Mol Biol. 1978 Aug 25;123(4):607–630. doi: 10.1016/0022-2836(78)90209-7. [DOI] [PubMed] [Google Scholar]
  27. Wagner T., Sprinzl M. Inhibition of ribosomal translocation by peptidyl transfer ribonucleic acid analogues. Biochemistry. 1983 Jan 4;22(1):94–98. doi: 10.1021/bi00270a013. [DOI] [PubMed] [Google Scholar]

Articles from The EMBO Journal are provided here courtesy of Nature Publishing Group

RESOURCES