Abstract
We have examined a wide range of cultured human tumor cell lines and found that a specific subset of tumors expresses the cholecystokinin (CCK) gene. All neuroepitheliomas (eight) and Ewing sarcoma (eight) cell lines that were tested express CCK RNA. In addition, two of six rhabdomyosarcoma cell lines also express the CCK gene, suggesting that rhabdomyosarcomas are probably heterogenous and that a subset may be similar to Ewing sarcoma and neuroepithelioma. Very few of the positive tumors express completely processed immunoreactive CCK. However, we have used a radioimmunoassay that detects the CCK precursor to demonstrate synthesis of CCK precursor-like peptides by all of the Ewing sarcoma and neuroepithelioma lines that were tested and by the rhabdomyosarcoma cell line that expresses CCK mRNA. These data demonstrate a consistent association of CCK gene expression with a specific group of human neoplasms. The data also add credence to the theory that Ewing sarcoma and neuroepithelioma are derived from the same transformed cell type. Finally, our results suggest that CCK gene expression may serve as a marker to distinguish these tumors, which are considered to be small-round-cell tumors of childhood, from other pediatric tumors.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adrian T. E., Domin J., Bacarese-Hamilton A. J., Bloom S. R. Is the C-terminal flanking peptide of rat cholecystokinin double sulphated? FEBS Lett. 1986 Feb 3;196(1):5–8. doi: 10.1016/0014-5793(86)80203-4. [DOI] [PubMed] [Google Scholar]
- Biedler J. L., Helson L., Spengler B. A. Morphology and growth, tumorigenicity, and cytogenetics of human neuroblastoma cells in continuous culture. Cancer Res. 1973 Nov;33(11):2643–2652. [PubMed] [Google Scholar]
- Bloom E. T. Further definition by cytotoxicity tests of cell surface antigens of human sarcomas in culture. Cancer Res. 1972 May;32(5):960–967. [PubMed] [Google Scholar]
- Brodeur G. M., Sekhon G., Goldstein M. N. Chromosomal aberrations in human neuroblastomas. Cancer. 1977 Nov;40(5):2256–2263. doi: 10.1002/1097-0142(197711)40:5<2256::aid-cncr2820400536>3.0.co;2-1. [DOI] [PubMed] [Google Scholar]
- Cavazzana A. O., Magnani J. L., Ross R. A., Miser J., Triche T. J. Ewing's sarcoma is an undifferentiated neuroectodermal tumor. Prog Clin Biol Res. 1988;271:487–498. [PubMed] [Google Scholar]
- Cavazzana A. O., Miser J. S., Jefferson J., Triche T. J. Experimental evidence for a neural origin of Ewing's sarcoma of bone. Am J Pathol. 1987 Jun;127(3):507–518. [PMC free article] [PubMed] [Google Scholar]
- Chirgwin J. M., Przybyla A. E., MacDonald R. J., Rutter W. J. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry. 1979 Nov 27;18(24):5294–5299. doi: 10.1021/bi00591a005. [DOI] [PubMed] [Google Scholar]
- Dickman P. S., Liotta L. A., Triche T. J. Ewing's sarcoma. Characterization in established cultures and evidence of its histogenesis. Lab Invest. 1982 Oct;47(4):375–382. [PubMed] [Google Scholar]
- Dockray G. J. Immunochemical evidence of cholecystokinin-like peptides in brain. Nature. 1976 Dec 9;264(5586):568–570. doi: 10.1038/264568a0. [DOI] [PubMed] [Google Scholar]
- Eng J., Gubler U., Raufman J. P., Chang M., Hulmes J. D., Pan Y. C., Yalow R. S. Cholecystokinin-associated COOH-terminal peptides are fully sulfated in pig brain. Proc Natl Acad Sci U S A. 1986 May;83(9):2832–2835. doi: 10.1073/pnas.83.9.2832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Enoch T., Zinn K., Maniatis T. Activation of the human beta-interferon gene requires an interferon-inducible factor. Mol Cell Biol. 1986 Mar;6(3):801–810. doi: 10.1128/mcb.6.3.801. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fogh J., Fogh J. M., Orfeo T. One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst. 1977 Jul;59(1):221–226. doi: 10.1093/jnci/59.1.221. [DOI] [PubMed] [Google Scholar]
- Fogh J., Wright W. C., Loveless J. D. Absence of HeLa cell contamination in 169 cell lines derived from human tumors. J Natl Cancer Inst. 1977 Feb;58(2):209–214. doi: 10.1093/jnci/58.2.209. [DOI] [PubMed] [Google Scholar]
- Friedman J. M., Babiss L. E., Clayton D. F., Darnell J. E., Jr Cellular promoters incorporated into the adenovirus genome: cell specificity of albumin and immunoglobulin expression. Mol Cell Biol. 1986 Nov;6(11):3791–3797. doi: 10.1128/mcb.6.11.3791. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gazdar A. F., Carney D. N., Russell E. K., Sims H. L., Baylin S. B., Bunn P. A., Jr, Guccion J. G., Minna J. D. Establishment of continuous, clonable cultures of small-cell carcinoma of lung which have amine precursor uptake and decarboxylation cell properties. Cancer Res. 1980 Oct;40(10):3502–3507. [PubMed] [Google Scholar]
- Giard D. J., Aaronson S. A., Todaro G. J., Arnstein P., Kersey J. H., Dosik H., Parks W. P. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst. 1973 Nov;51(5):1417–1423. doi: 10.1093/jnci/51.5.1417. [DOI] [PubMed] [Google Scholar]
- Griffin C. A., McKeon C., Israel M. A., Gegonne A., Ghysdael J., Stehelin D., Douglass E. C., Green A. E., Emanuel B. S. Comparison of constitutional and tumor-associated 11;22 translocations: nonidentical breakpoints on chromosomes 11 and 22. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6122–6126. doi: 10.1073/pnas.83.16.6122. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Helson L., Helson C. Human neuroblastoma cells and 13-cis-retinoic acid. J Neurooncol. 1985;3(1):39–41. doi: 10.1007/BF00165170. [DOI] [PubMed] [Google Scholar]
- Innis R. B., Corrêa F. M., Uhl G. R., Schneider B., Snyder S. H. Cholecystokinin octapeptide-like immunoreactivity: histochemical localization in rat brain. Proc Natl Acad Sci U S A. 1979 Jan;76(1):521–525. doi: 10.1073/pnas.76.1.521. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lipinski M., Braham K., Philip I., Wiels J., Philip T., Goridis C., Lenoir G. M., Tursz T. Neuroectoderm-associated antigens on Ewing's sarcoma cell lines. Cancer Res. 1987 Jan 1;47(1):183–187. [PubMed] [Google Scholar]
- McAllister R. M., Melnyk J., Finkelstein J. Z., Adams E. C., Jr, Gardner M. B. Cultivation in vitro of cells derived from a human rhabdomyosarcoma. Cancer. 1969 Sep;24(3):520–526. doi: 10.1002/1097-0142(196909)24:3<520::aid-cncr2820240313>3.0.co;2-m. [DOI] [PubMed] [Google Scholar]
- McKeon C., Thiele C. J., Ross R. A., Kwan M., Triche T. J., Miser J. S., Israel M. A. Indistinguishable patterns of protooncogene expression in two distinct but closely related tumors: Ewing's sarcoma and neuroepithelioma. Cancer Res. 1988 Aug 1;48(15):4307–4311. [PubMed] [Google Scholar]
- Miser J. S., Kinsella T. J., Triche T. J., Steis R., Tsokos M., Wesley R., Horvath K., Belasco J., Longo D. L., Glatstein E. Treatment of peripheral neuroepithelioma in children and young adults. J Clin Oncol. 1987 Nov;5(11):1752–1758. doi: 10.1200/JCO.1987.5.11.1752. [DOI] [PubMed] [Google Scholar]
- Muller J. E., Straus E., Yalow R. S. Cholecystokinin and its COOH-terminal octapeptide in the pig brain. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3035–3037. doi: 10.1073/pnas.74.7.3035. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Oettgen H. F., Aoki T., Old L. J., Boyse E. A., de Harven E., Mills G. M. Suspension culture of a pigment-producing cell line derived from a human malignant melanoma. J Natl Cancer Inst. 1968 Oct;41(4):827–843. [PubMed] [Google Scholar]
- Pontén J., Saksela E. Two established in vitro cell lines from human mesenchymal tumours. Int J Cancer. 1967 Sep 15;2(5):434–447. doi: 10.1002/ijc.2910020505. [DOI] [PubMed] [Google Scholar]
- Rehfeld J. F. Immunochemical studies on cholecystokinin. II. Distribution and molecular heterogeneity in the central nervous system and small intestine of man and hog. J Biol Chem. 1978 Jun 10;253(11):4022–4030. [PubMed] [Google Scholar]
- Rehfeld J. F., Johnsen A. H., Odum L., Bardram L., Schifter S., Scopsi L. Non-sulphated cholecystokinin in human medullary thyroid carcinomas. J Endocrinol. 1990 Mar;124(3):501–506. doi: 10.1677/joe.0.1240501. [DOI] [PubMed] [Google Scholar]
- Rehfeld J. F., Lindholm J., Andersen B. N., Bardram L., Cantor P., Fenger M., Lüdecke D. K. Pituitary tumors containing cholecystokinin. N Engl J Med. 1987 May 14;316(20):1244–1247. doi: 10.1056/NEJM198705143162004. [DOI] [PubMed] [Google Scholar]
- Rhim J. S., Cho H. Y., Huebner R. J. Non-producer human cells induced by murine sarcoma virus. Int J Cancer. 1975 Jan 15;15(1):23–29. doi: 10.1002/ijc.2910150104. [DOI] [PubMed] [Google Scholar]
- Schneider B. S., Helson L., Monahan J. W., Friedman J. M. Expression of the cholecystokinin gene by cultured human primitive neuroepithelioma cell lines. J Clin Endocrinol Metab. 1989 Aug;69(2):411–419. doi: 10.1210/jcem-69-2-411. [DOI] [PubMed] [Google Scholar]
- Schneider B. S., Maimon J., Friedman J. Expression of a cholecystokinin precursor-related peptide in vertebrate and invertebrate tissues. Am J Physiol. 1986 Dec;251(6 Pt 1):E707–E714. doi: 10.1152/ajpendo.1986.251.6.E707. [DOI] [PubMed] [Google Scholar]
- Schneider B. S., Monahan J. W., Hirsch J. Brain cholecystokinin and nutritional status in rats and mice. J Clin Invest. 1979 Nov;64(5):1348–1356. doi: 10.1172/JCI109591. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Stratton M. R., Reeves B. R., Cooper C. S. Misidentified cell. Nature. 1989 Jan 26;337(6205):311–312. doi: 10.1038/337311c0. [DOI] [PubMed] [Google Scholar]
- Thiele C. J., McKeon C., Triche T. J., Ross R. A., Reynolds C. P., Israel M. A. Differential protooncogene expression characterizes histopathologically indistinguishable tumors of the peripheral nervous system. J Clin Invest. 1987 Sep;80(3):804–811. doi: 10.1172/JCI113137. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Tumilowicz J. J., Nichols W. W., Cholon J. J., Greene A. E. Definition of a continuous human cell line derived from neuroblastoma. Cancer Res. 1970 Aug;30(8):2110–2118. [PubMed] [Google Scholar]
- Vanderhaeghen J. J., Signeau J. C., Gepts W. New peptide in the vertebrate CNS reacting with antigastrin antibodies. Nature. 1975 Oct 16;257(5527):604–605. doi: 10.1038/257604a0. [DOI] [PubMed] [Google Scholar]
- Varro A., Dockray G. J. Identification of the C-terminal flanking peptide of preprocholecystokinin in rat brain by a novel radioimmunoassay. Brain Res. 1986 Jun 18;376(1):213–216. doi: 10.1016/0006-8993(86)90921-2. [DOI] [PubMed] [Google Scholar]
- Vitale M., Vashishtha A., Linzer E., Powell D. J., Friedman J. M. Molecular cloning of the mouse CCK gene: expression in different brain regions and during cortical development. Nucleic Acids Res. 1991 Jan 11;19(1):169–177. doi: 10.1093/nar/19.1.169. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Whang-Peng J., Triche T. J., Knutsen T., Miser J., Douglass E. C., Israel M. A. Chromosome translocation in peripheral neuroepithelioma. N Engl J Med. 1984 Aug 30;311(9):584–585. doi: 10.1056/NEJM198408303110907. [DOI] [PubMed] [Google Scholar]
- Whang-Peng J., Triche T. J., Knutsen T., Miser J., Kao-Shan S., Tsai S., Israel M. A. Cytogenetic characterization of selected small round cell tumors of childhood. Cancer Genet Cytogenet. 1986 Apr 1;21(3):185–208. doi: 10.1016/0165-4608(86)90001-4. [DOI] [PubMed] [Google Scholar]


