Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jan 9;93(1):326–330. doi: 10.1073/pnas.93.1.326

The transcriptional transactivator of simian foamy virus 1 binds to a DNA target element in the viral internal promoter.

J X Zou 1, P A Luciw 1
PMCID: PMC40231  PMID: 8552631

Abstract

The transcriptional transactivator (Tas) of simian foamy virus type 1 strongly augments gene expression directed by both the promoter in the viral long terminal repeat and the newly discovered internal promoter located within the env gene. A region of 121 bp, located immediately 5' to the TATA box in the internal promoter, is required for transactivation by Tas. The present study aimed to identify the precise Tas-responsive target(s) in this region and to determine the role of Tas in transcriptional regulation. By analysis of both clustered-site mutations and hybrid promoters in transient expression assays in murine and simian cells, two separate sequence elements within this 121-bp region were shown to be Tas-dependent transcriptional enhancers. These targets, each < 30 bp in length and displaying no apparent sequence homology one to the other, are designated the promoter-proximal and promoter-distal elements. By means of the gel electrophoresis mobility-shift assays, using purified glutathione S-transferase-Tas fusion protein expressed in Escherichia coli, the target proximal to the TATA box exhibited strong binding to glutathione S-transferase-Tas, whereas the distal element appears not to bind. In addition, footprint analysis revealed that 26 bp in the promoter proximal element was protected by glutathione S-transferase-Tas from DNase I. We propose a model for transactivation of the simian foamy virus type 1 internal promoter in which Tas interacts directly with the proximal target element positioned immediately 5' to the TATA box. In this model, Tas attached to this element is presumed to interact with a component(s) of the cellular RNA polymerase II initiation complex and thereby enhance transcription directed by the viral internal promoter.

Full text

PDF
326

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barry P. A., Pratt-Lowe E., Peterlin B. M., Luciw P. A. Cytomegalovirus activates transcription directed by the long terminal repeat of human immunodeficiency virus type 1. J Virol. 1990 Jun;64(6):2932–2940. doi: 10.1128/jvi.64.6.2932-2940.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blair W. S., Bogerd H., Cullen B. R. Genetic analysis indicates that the human foamy virus Bel-1 protein contains a transcription activation domain of the acidic class. J Virol. 1994 Jun;68(6):3803–3808. doi: 10.1128/jvi.68.6.3803-3808.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell M., Renshaw-Gegg L., Renne R., Luciw P. A. Characterization of the internal promoter of simian foamy viruses. J Virol. 1994 Aug;68(8):4811–4820. doi: 10.1128/jvi.68.8.4811-4820.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chang J., Lee K. J., Jang K. L., Lee E. K., Baek G. H., Sung Y. C. Human foamy virus Bel1 transactivator contains a bipartite nuclear localization determinant which is sensitive to protein context and triple multimerization domains. J Virol. 1995 Feb;69(2):801–808. doi: 10.1128/jvi.69.2.801-808.1995. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen H. W., Privalsky M. L. The erbA oncogene represses the actions of both retinoid X and retinoid A receptors but does so by distinct mechanisms. Mol Cell Biol. 1993 Oct;13(10):5970–5980. doi: 10.1128/mcb.13.10.5970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Conaway R. C., Conaway J. W. General initiation factors for RNA polymerase II. Annu Rev Biochem. 1993;62:161–190. doi: 10.1146/annurev.bi.62.070193.001113. [DOI] [PubMed] [Google Scholar]
  7. Cullen B. R. Human immunodeficiency virus as a prototypic complex retrovirus. J Virol. 1991 Mar;65(3):1053–1056. doi: 10.1128/jvi.65.3.1053-1056.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erlwein O., Rethwilm A. BEL-1 transactivator responsive sequences in the long terminal repeat of human foamy virus. Virology. 1993 Sep;196(1):256–268. doi: 10.1006/viro.1993.1474. [DOI] [PubMed] [Google Scholar]
  9. Garrett E. D., He F., Bogerd H. P., Cullen B. R. Transcriptional trans activators of human and simian foamy viruses contain a small, highly conserved activation domain. J Virol. 1993 Nov;67(11):6824–6827. doi: 10.1128/jvi.67.11.6824-6827.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. He F., Sun J. D., Garrett E. D., Cullen B. R. Functional organization of the Bel-1 trans activator of human foamy virus. J Virol. 1993 Apr;67(4):1896–1904. doi: 10.1128/jvi.67.4.1896-1904.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Huang K. J., Schieberl J. L., Igo M. M. A distant upstream site involved in the negative regulation of the Escherichia coli ompF gene. J Bacteriol. 1994 Mar;176(5):1309–1315. doi: 10.1128/jb.176.5.1309-1315.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Keller A., Partin K. M., Löchelt M., Bannert H., Flügel R. M., Cullen B. R. Characterization of the transcriptional trans activator of human foamy retrovirus. J Virol. 1991 May;65(5):2589–2594. doi: 10.1128/jvi.65.5.2589-2594.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lee C. W., Chang J., Lee K. J., Sung Y. C. The Bel1 protein of human foamy virus contains one positive and two negative control regions which regulate a distinct activation domain of 30 amino acids. J Virol. 1994 Apr;68(4):2708–2719. doi: 10.1128/jvi.68.4.2708-2719.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lee K. J., Lee A. H., Sung Y. C. Multiple positive and negative cis-acting elements that mediate transactivation by bel1 in the long terminal repeat of human foamy virus. J Virol. 1993 Apr;67(4):2317–2326. doi: 10.1128/jvi.67.4.2317-2326.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Löchelt M., Flügel R. M., Aboud M. The human foamy virus internal promoter directs the expression of the functional Bel 1 transactivator and Bet protein early after infection. J Virol. 1994 Feb;68(2):638–645. doi: 10.1128/jvi.68.2.638-645.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Löchelt M., Muranyi W., Flügel R. M. Human foamy virus genome possesses an internal, Bel-1-dependent and functional promoter. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7317–7321. doi: 10.1073/pnas.90.15.7317. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Mergia A., Luciw P. A. Replication and regulation of primate foamy viruses. Virology. 1991 Oct;184(2):475–482. doi: 10.1016/0042-6822(91)90417-a. [DOI] [PubMed] [Google Scholar]
  18. Mergia A., Pratt-Lowe E., Shaw K. E., Renshaw-Gegg L. W., Luciw P. A. cis-acting regulatory regions in the long terminal repeat of simian foamy virus type 1. J Virol. 1992 Jan;66(1):251–257. doi: 10.1128/jvi.66.1.251-257.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Mergia A., Renshaw-Gegg L. W., Stout M. W., Renne R., Herchenröeder O. Functional domains of the simian foamy virus type 1 transcriptional transactivator (Taf). J Virol. 1993 Aug;67(8):4598–4604. doi: 10.1128/jvi.67.8.4598-4604.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Mergia A., Shaw K. E., Pratt-Lowe E., Barry P. A., Luciw P. A. Identification of the simian foamy virus transcriptional transactivator gene (taf). J Virol. 1991 Jun;65(6):2903–2909. doi: 10.1128/jvi.65.6.2903-2909.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Mergia A. Simian foamy virus type 1 contains a second promoter located at the 3' end of the env gene. Virology. 1994 Feb 15;199(1):219–222. doi: 10.1006/viro.1994.1114. [DOI] [PubMed] [Google Scholar]
  22. Muranyi W., Flügel R. M. Analysis of splicing patterns of human spumaretrovirus by polymerase chain reaction reveals complex RNA structures. J Virol. 1991 Feb;65(2):727–735. doi: 10.1128/jvi.65.2.727-735.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Renne R., Mergia A., Renshaw-Gegg L. W., Neumann-Haefelin D., Luciw P. A. Regulatory elements in the long terminal repeat (LTR) of simian foamy virus type 3 (SFV-3). Virology. 1993 Jan;192(1):365–369. doi: 10.1006/viro.1993.1045. [DOI] [PubMed] [Google Scholar]
  24. Rethwilm A., Erlwein O., Baunach G., Maurer B., ter Meulen V. The transcriptional transactivator of human foamy virus maps to the bel 1 genomic region. Proc Natl Acad Sci U S A. 1991 Feb 1;88(3):941–945. doi: 10.1073/pnas.88.3.941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Venkatesh L. K., Chinnadurai G. The carboxy-terminal transcription enhancement region of the human spumaretrovirus transactivator contains discrete determinants of the activator function. J Virol. 1993 Jul;67(7):3868–3876. doi: 10.1128/jvi.67.7.3868-3876.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Venkatesh L. K., Theodorakis P. A., Chinnadurai G. Distinct cis-acting regions in U3 regulate trans-activation of the human spumaretrovirus long terminal repeat by the viral bel1 gene product. Nucleic Acids Res. 1991 Jul 11;19(13):3661–3666. doi: 10.1093/nar/19.13.3661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Venkatesh L. K., Yang C., Theodorakis P. A., Chinnadurai G. Functional dissection of the human spumaretrovirus transactivator identifies distinct classes of dominant-negative mutants. J Virol. 1993 Jan;67(1):161–169. doi: 10.1128/jvi.67.1.161-169.1993. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES