Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jan 9;93(1):447–451. doi: 10.1073/pnas.93.1.447

The Drosophila melanogaster dodo (dod) gene, conserved in humans, is functionally interchangeable with the ESS1 cell division gene of Saccharomyces cerevisiae.

R Maleszka 1, S D Hanes 1, R L Hackett 1, H G de Couet 1, G L Miklos 1
PMCID: PMC40255  PMID: 8552658

Abstract

We have sequenced the region of DNA adjacent to and including the flightless (fli) gene of Drosophila melanogaster and molecularly characterized four transcription units within it, which we have named tweety (twe), flightless (fli), dodo (dod), and penguin (pen). We have performed deletion and transgenic analysis to determine the consequences of the quadruple gene removal. Only the flightless gene is vital to the organism; the simultaneous absence of the other three allows the overriding majority of individuals to develop to adulthood and to fly normally. These gene deletion results are evaluated in the context of the redundancy and degeneracy inherent in many genetic networks. Our cDNA analyses and data-base searches reveal that the predicted dodo protein has homologs in other eukaryotes and that it is made up of two different domains. The first, designated WW, is involved in protein-protein interactions and is found in functionally diverse proteins including human dystrophin. The second is involved in accelerating protein folding and unfolding and is found in Escherichia coli in a new family of peptidylprolyl cis-trans isomerases (PPIases; EC 5.2.1.8). In eukaryotes, PPIases occur in the nucleus and the cytoplasm and can form stable associations with transcription factors, receptors, and kinases. Given this particular combination of domains, the dodo protein may well participate in a multisubunit complex involved in the folding and activation of signaling molecules. When we expressed the dodo gene product in Saccharomyces cerevisiae, it rescued the lethal phenotype of the ESS1 cell division gene.

Full text

PDF
447

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brenner S., Dove W., Herskowitz I., Thomas R. Genes and development: molecular and logical themes. Genetics. 1990 Nov;126(3):479–486. doi: 10.1093/genetics/126.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cadigan K. M., Grossniklaus U., Gehring W. J. Functional redundancy: the respective roles of the two sloppy paired genes in Drosophila segmentation. Proc Natl Acad Sci U S A. 1994 Jul 5;91(14):6324–6328. doi: 10.1073/pnas.91.14.6324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Campbell H. D., Schimansky T., Claudianos C., Ozsarac N., Kasprzak A. B., Cotsell J. N., Young I. G., de Couet H. G., Miklos G. L. The Drosophila melanogaster flightless-I gene involved in gastrulation and muscle degeneration encodes gelsolin-like and leucine-rich repeat domains and is conserved in Caenorhabditis elegans and humans. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):11386–11390. doi: 10.1073/pnas.90.23.11386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chen H. I., Sudol M. The WW domain of Yes-associated protein binds a proline-rich ligand that differs from the consensus established for Src homology 3-binding modules. Proc Natl Acad Sci U S A. 1995 Aug 15;92(17):7819–7823. doi: 10.1073/pnas.92.17.7819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen K. S., Gunaratne P. H., Hoheisel J. D., Young I. G., Miklos G. L., Greenberg F., Shaffer L. G., Campbell H. D., Lupski J. R. The human homologue of the Drosophila melanogaster flightless-I gene (flil) maps within the Smith-Magenis microdeletion critical region in 17p11.2. Am J Hum Genet. 1995 Jan;56(1):175–182. [PMC free article] [PubMed] [Google Scholar]
  6. Crossin K. L. Functional role of cytotactin/tenascin in morphogenesis: a modest proposal. Perspect Dev Neurobiol. 1994;2(1):21–32. [PubMed] [Google Scholar]
  7. Delaney S. J., Hayward D. C., Barleben F., Fischbach K. F., Miklos G. L. Molecular cloning and analysis of small optic lobes, a structural brain gene of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7214–7218. doi: 10.1073/pnas.88.16.7214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Erickson H. P. Gene knockouts of c-src, transforming growth factor beta 1, and tenascin suggest superfluous, nonfunctional expression of proteins. J Cell Biol. 1993 Mar;120(5):1079–1081. doi: 10.1083/jcb.120.5.1079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Ferguson E. L., Horvitz H. R. The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. Genetics. 1989 Sep;123(1):109–121. doi: 10.1093/genetics/123.1.109. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Friedrich G., Soriano P. Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev. 1991 Sep;5(9):1513–1523. doi: 10.1101/gad.5.9.1513. [DOI] [PubMed] [Google Scholar]
  11. Fryberg M., Oehlschlager A. C., Unrau A. M. Biosynthesis of ergosterol in yeast. Evidence for multiple pathways. J Am Chem Soc. 1973 Aug 22;95(17):5747–5757. doi: 10.1021/ja00798a051. [DOI] [PubMed] [Google Scholar]
  12. Goebl M. G., Petes T. D. Most of the yeast genomic sequences are not essential for cell growth and division. Cell. 1986 Sep 26;46(7):983–992. doi: 10.1016/0092-8674(86)90697-5. [DOI] [PubMed] [Google Scholar]
  13. Hanes S. D., Shank P. R., Bostian K. A. Sequence and mutational analysis of ESS1, a gene essential for growth in Saccharomyces cerevisiae. Yeast. 1989 Jan-Feb;5(1):55–72. doi: 10.1002/yea.320050108. [DOI] [PubMed] [Google Scholar]
  14. Hani J., Stumpf G., Domdey H. PTF1 encodes an essential protein in Saccharomyces cerevisiae, which shows strong homology with a new putative family of PPIases. FEBS Lett. 1995 May 29;365(2-3):198–202. doi: 10.1016/0014-5793(95)00471-k. [DOI] [PubMed] [Google Scholar]
  15. Hayward D. C., Delaney S. J., Campbell H. D., Ghysen A., Benzer S., Kasprzak A. B., Cotsell J. N., Young I. G., Miklos G. L. The sluggish-A gene of Drosophila melanogaster is expressed in the nervous system and encodes proline oxidase, a mitochondrial enzyme involved in glutamate biosynthesis. Proc Natl Acad Sci U S A. 1993 Apr 1;90(7):2979–2983. doi: 10.1073/pnas.90.7.2979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Johnsen R. C., Baillie D. L. Genetic analysis of a major segment [LGV(left)] of the genome of Caenorhabditis elegans. Genetics. 1991 Nov;129(3):735–752. doi: 10.1093/genetics/129.3.735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Maier D., Marte B. M., Schäfer W., Yu Y., Preiss A. Drosophila evolution challenges postulated redundancy in the E(spl) gene complex. Proc Natl Acad Sci U S A. 1993 Jun 15;90(12):5464–5468. doi: 10.1073/pnas.90.12.5464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miklos G. L., De Couet H. G. The mutations previously designated as flightless-I3, flightless-O2 and standby are members of the W-2 lethal complementation group at the base of the X-chromosome of Drosophila melanogaster. J Neurogenet. 1990 Apr;6(3):133–151. doi: 10.3109/01677069009107106. [DOI] [PubMed] [Google Scholar]
  19. Miklos G. L. Molecules and cognition: the latterday lessons of levels, language, and lac. Evolutionary overview of brain structure and function in some vertebrates and invertebrates. J Neurobiol. 1993 Jun;24(6):842–890. doi: 10.1002/neu.480240610. [DOI] [PubMed] [Google Scholar]
  20. Perrimon N., Smouse D., Miklos G. L. Developmental genetics of loci at the base of the X chromosome of Drosophila melanogaster. Genetics. 1989 Feb;121(2):313–331. doi: 10.1093/genetics/121.2.313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rahfeld J. U., Rücknagel K. P., Schelbert B., Ludwig B., Hacker J., Mann K., Fischer G. Confirmation of the existence of a third family among peptidyl-prolyl cis/trans isomerases. Amino acid sequence and recombinant production of parvulin. FEBS Lett. 1994 Sep 26;352(2):180–184. doi: 10.1016/0014-5793(94)00932-5. [DOI] [PubMed] [Google Scholar]
  22. Rudd K. E., Sofia H. J., Koonin E. V., Plunkett G., 3rd, Lazar S., Rouviere P. E. A new family of peptidyl-prolyl isomerases. Trends Biochem Sci. 1995 Jan;20(1):12–14. doi: 10.1016/s0968-0004(00)88940-9. [DOI] [PubMed] [Google Scholar]
  23. Rutherford S. L., Zuker C. S. Protein folding and the regulation of signaling pathways. Cell. 1994 Dec 30;79(7):1129–1132. doi: 10.1016/0092-8674(94)90003-5. [DOI] [PubMed] [Google Scholar]
  24. Schmid F. X. Prolyl isomerase: enzymatic catalysis of slow protein-folding reactions. Annu Rev Biophys Biomol Struct. 1993;22:123–142. doi: 10.1146/annurev.bb.22.060193.001011. [DOI] [PubMed] [Google Scholar]
  25. Soriano P. Gene targeting in ES cells. Annu Rev Neurosci. 1995;18:1–18. doi: 10.1146/annurev.ne.18.030195.000245. [DOI] [PubMed] [Google Scholar]
  26. Sudol M., Bork P., Einbond A., Kastury K., Druck T., Negrini M., Huebner K., Lehman D. Characterization of the mammalian YAP (Yes-associated protein) gene and its role in defining a novel protein module, the WW domain. J Biol Chem. 1995 Jun 16;270(24):14733–14741. doi: 10.1074/jbc.270.24.14733. [DOI] [PubMed] [Google Scholar]
  27. Tautz D. Redundancies, development and the flow of information. Bioessays. 1992 Apr;14(4):263–266. doi: 10.1002/bies.950140410. [DOI] [PubMed] [Google Scholar]
  28. Travis J. Scoring a technical knockout in mice. Science. 1992 Jun 5;256(5062):1392–1394. doi: 10.1126/science.1351316. [DOI] [PubMed] [Google Scholar]
  29. Tugendreich S., Bassett D. E., Jr, McKusick V. A., Boguski M. S., Hieter P. Genes conserved in yeast and humans. Hum Mol Genet. 1994;3(Spec No):1509–1517. doi: 10.1093/hmg/3.suppl_1.1509. [DOI] [PubMed] [Google Scholar]
  30. de Couet H. G., Fong K. S., Weeds A. G., McLaughlin P. J., Miklos G. L. Molecular and mutational analysis of a gelsolin-family member encoded by the flightless I gene of Drosophila melanogaster. Genetics. 1995 Nov;141(3):1049–1059. doi: 10.1093/genetics/141.3.1049. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES