Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Dec 19;92(26):12003–12007. doi: 10.1073/pnas.92.26.12003

Serine-1321-independent regulation of the mu 1 adult skeletal muscle Na+ channel by protein kinase C.

S Bendahhou 1, T R Cummins 1, J F Potts 1, J Tong 1, W S Agnew 1
PMCID: PMC40284  PMID: 8618832

Abstract

The adult skeletal muscle Na+ channel mu1 possesses a highly conserved segment between subunit domains III and IV containing a consensus protein kinase C (PKC) phosphorylation site that, in the neuronal isoform, acts as a master control for "convergent" regulation by PKC and cAMP-dependent protein kinase. It lacks an approximately 200-aa segment between domains I and II though to modulate channel gating. We here demonstrate that mu1 is regulated by PKC (but not cAMP-dependent protein kinase) in a manner distinct from that observed for the neuronal isoforms, suggesting that under the same conditions muscle excitation could be uncoupled from motor neuron input. Maximal phosphorylation by PKC, in the presence of phosphatase inhibitors, reduced peak Na+ currents by approximately 90% by decreasing the maximal conductance, caused a -15 mV shift in the midpoint of steady-state inactivation, and caused a slight speeding of inactivation. Surprisingly, these effects were not affected by mutation of the conserved serine (serine-1321) in the interdomain III-IV loop. the pattern of current suppression and gating modification by PKC resembles the response of muscle Na+ channels to inhibitory factors present in the serum and cerebrospinal fluid of patients with Guillain-Barré syndrome, multiple sclerosis, and idiopathic demyelinating polyradiculoneuritis.

Full text

PDF
12003

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Agnew W. S., Cooper E. C., Shenkel S., Correa A. M., James W. M., Ukomadu C., Tomiko S. A. Voltage-sensitive sodium channels: agents that perturb inactivation gating. Ann N Y Acad Sci. 1991;625:200–223. doi: 10.1111/j.1749-6632.1991.tb33842.x. [DOI] [PubMed] [Google Scholar]
  2. Beckner S. K., Farrar W. L. Interleukin 2 modulation of adenylate cyclase. Potential role of protein kinase C. J Biol Chem. 1986 Mar 5;261(7):3043–3047. [PubMed] [Google Scholar]
  3. Brinkmeier H., Kaspar A., Wiethölter H., Rüdel R. Interleukin-2 inhibits sodium currents in human muscle cells. Pflugers Arch. 1992 Apr;420(5-6):621–623. doi: 10.1007/BF00374643. [DOI] [PubMed] [Google Scholar]
  4. Brinkmeier H., Wollinsky K. H., Hülser P. J., Seewald M. J., Mehrkens H. H., Kornhuber H. H., Rüdel R. The acute paralysis in Guillain-Barré syndrome is related to a Na+ channel blocking factor in the cerebrospinal fluid. Pflugers Arch. 1992 Sep;421(6):552–557. doi: 10.1007/BF00375050. [DOI] [PubMed] [Google Scholar]
  5. Brinkmeier H., Wollinsky K. H., Seewald M. J., Hülser P. J., Mehrkens H. H., Kornhuber H. H., Rüdel R. Factors in the cerebrospinal fluid of multiple sclerosis patients interfering with voltage-dependent sodium channels. Neurosci Lett. 1993 Jun 25;156(1-2):172–175. doi: 10.1016/0304-3940(93)90465-w. [DOI] [PubMed] [Google Scholar]
  6. Bruns R. F., Miller F. D., Merriman R. L., Howbert J. J., Heath W. F., Kobayashi E., Takahashi I., Tamaoki T., Nakano H. Inhibition of protein kinase C by calphostin C is light-dependent. Biochem Biophys Res Commun. 1991 Apr 15;176(1):288–293. doi: 10.1016/0006-291x(91)90922-t. [DOI] [PubMed] [Google Scholar]
  7. Casadei J. M., Gordon R. D., Barchi R. L. Immunoaffinity isolation of Na+ channels from rat skeletal muscle. Analysis of subunits. J Biol Chem. 1986 Mar 25;261(9):4318–4323. [PubMed] [Google Scholar]
  8. Cummins T. R., Zhou J., Sigworth F. J., Ukomadu C., Stephan M., Ptácek L. J., Agnew W. S. Functional consequences of a Na+ channel mutation causing hyperkalemic periodic paralysis. Neuron. 1993 Apr;10(4):667–678. doi: 10.1016/0896-6273(93)90168-q. [DOI] [PubMed] [Google Scholar]
  9. Dascal N., Lotan I. Activation of protein kinase C alters voltage dependence of a Na+ channel. Neuron. 1991 Jan;6(1):165–175. doi: 10.1016/0896-6273(91)90131-i. [DOI] [PubMed] [Google Scholar]
  10. Evans S. W., Beckner S. K., Farrar W. L. Stimulation of specific GTP binding and hydrolysis activities in lymphocyte membrane by interleukin-2. Nature. 1987 Jan 8;325(7000):166–168. doi: 10.1038/325166a0. [DOI] [PubMed] [Google Scholar]
  11. Gautron S., Dos Santos G., Pinto-Henrique D., Koulakoff A., Gros F., Berwald-Netter Y. The glial voltage-gated sodium channel: cell- and tissue-specific mRNA expression. Proc Natl Acad Sci U S A. 1992 Aug 1;89(15):7272–7276. doi: 10.1073/pnas.89.15.7272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  13. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  14. Hartshorne R. P., Messner D. J., Coppersmith J. C., Catterall W. A. The saxitoxin receptor of the sodium channel from rat brain. Evidence for two nonidentical beta subunits. J Biol Chem. 1982 Dec 10;257(23):13888–13891. [PubMed] [Google Scholar]
  15. Hartung H. P., Reiners K., Schmidt B., Stoll G., Toyka K. V. Serum interleukin-2 concentrations in Guillain-Barré syndrome and chronic idiopathic demyelinating polyradiculoneuropathy: comparison with other neurological diseases of presumed immunopathogenesis. Ann Neurol. 1991 Jul;30(1):48–53. doi: 10.1002/ana.410300110. [DOI] [PubMed] [Google Scholar]
  16. Isom L. L., De Jongh K. S., Patton D. E., Reber B. F., Offord J., Charbonneau H., Walsh K., Goldin A. L., Catterall W. A. Primary structure and functional expression of the beta 1 subunit of the rat brain sodium channel. Science. 1992 May 8;256(5058):839–842. doi: 10.1126/science.1375395. [DOI] [PubMed] [Google Scholar]
  17. Li M., West J. W., Numann R., Murphy B. J., Scheuer T., Catterall W. A. Convergent regulation of sodium channels by protein kinase C and cAMP-dependent protein kinase. Science. 1993 Sep 10;261(5127):1439–1442. doi: 10.1126/science.8396273. [DOI] [PubMed] [Google Scholar]
  18. Linden D. J., Routtenberg A. cis-Fatty acids, which activate protein kinase C, attenuate Na+ and Ca2+ currents in mouse neuroblastoma cells. J Physiol. 1989 Dec;419:95–119. doi: 10.1113/jphysiol.1989.sp017863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. McCombie W. R., Heiner C., Kelley J. M., Fitzgerald M. G., Gocayne J. D. Rapid and reliable fluorescent cycle sequencing of double-stranded templates. DNA Seq. 1992;2(5):289–296. doi: 10.3109/10425179209030961. [DOI] [PubMed] [Google Scholar]
  20. Noda M., Ikeda T., Kayano T., Suzuki H., Takeshima H., Kurasaki M., Takahashi H., Numa S. Existence of distinct sodium channel messenger RNAs in rat brain. Nature. 1986 Mar 13;320(6058):188–192. doi: 10.1038/320188a0. [DOI] [PubMed] [Google Scholar]
  21. Numann R., Catterall W. A., Scheuer T. Functional modulation of brain sodium channels by protein kinase C phosphorylation. Science. 1991 Oct 4;254(5028):115–118. doi: 10.1126/science.1656525. [DOI] [PubMed] [Google Scholar]
  22. Numann R., Hauschka S. D., Catterall W. A., Scheuer T. Modulation of skeletal muscle sodium channels in a satellite cell line by protein kinase C. J Neurosci. 1994 Jul;14(7):4226–4236. doi: 10.1523/JNEUROSCI.14-07-04226.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Ono K., Kiyosue T., Arita M. Isoproterenol, DBcAMP, and forskolin inhibit cardiac sodium current. Am J Physiol. 1989 Jun;256(6 Pt 1):C1131–C1137. doi: 10.1152/ajpcell.1989.256.6.C1131. [DOI] [PubMed] [Google Scholar]
  24. Patton D. E., West J. W., Catterall W. A., Goldin A. L. Amino acid residues required for fast Na(+)-channel inactivation: charge neutralizations and deletions in the III-IV linker. Proc Natl Acad Sci U S A. 1992 Nov 15;89(22):10905–10909. doi: 10.1073/pnas.89.22.10905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sarkar G., Sommer S. S. The "megaprimer" method of site-directed mutagenesis. Biotechniques. 1990 Apr;8(4):404–407. [PubMed] [Google Scholar]
  26. Schubert B., VanDongen A. M., Kirsch G. E., Brown A. M. Beta-adrenergic inhibition of cardiac sodium channels by dual G-protein pathways. Science. 1989 Aug 4;245(4917):516–519. doi: 10.1126/science.2547248. [DOI] [PubMed] [Google Scholar]
  27. Sigel E., Baur R. Activation of protein kinase C differentially modulates neuronal Na+, Ca2+, and gamma-aminobutyrate type A channels. Proc Natl Acad Sci U S A. 1988 Aug;85(16):6192–6196. doi: 10.1073/pnas.85.16.6192. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Smith L. M., Sanders J. Z., Kaiser R. J., Hughes P., Dodd C., Connell C. R., Heiner C., Kent S. B., Hood L. E. Fluorescence detection in automated DNA sequence analysis. Nature. 1986 Jun 12;321(6071):674–679. doi: 10.1038/321674a0. [DOI] [PubMed] [Google Scholar]
  29. Tong J., Bendahhou S., Chen H., Agnew W. S. A simplified method for single-cell RT-PCR that can detect and distinguish genomic DNA and mRNA transcripts. Nucleic Acids Res. 1994 Aug 11;22(15):3253–3254. doi: 10.1093/nar/22.15.3253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Tong J., Potts J. F., Rochelle J. M., Seldin M. F., Agnew W. S. A single B1 subunit mapped to mouse chromosome 7 may be a common component of Na channel isoforms from brain, skeletal muscle and heart. Biochem Biophys Res Commun. 1993 Sep 15;195(2):679–685. doi: 10.1006/bbrc.1993.2099. [DOI] [PubMed] [Google Scholar]
  31. Trimmer J. S., Cooperman S. S., Tomiko S. A., Zhou J. Y., Crean S. M., Boyle M. B., Kallen R. G., Sheng Z. H., Barchi R. L., Sigworth F. J. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron. 1989 Jul;3(1):33–49. doi: 10.1016/0896-6273(89)90113-x. [DOI] [PubMed] [Google Scholar]
  32. Trotter J. L., Clifford D. B., Anderson C. B., van der Veen R. C., Hicks B. C., Banks G. Elevated serum interleukin-2 levels in chronic progressive multiple sclerosis. N Engl J Med. 1988 May 5;318(18):1206–1206. doi: 10.1056/nejm198805053181816. [DOI] [PubMed] [Google Scholar]
  33. Ukomadu C., Zhou J., Sigworth F. J., Agnew W. S. muI Na+ channels expressed transiently in human embryonic kidney cells: biochemical and biophysical properties. Neuron. 1992 Apr;8(4):663–676. doi: 10.1016/0896-6273(92)90088-u. [DOI] [PubMed] [Google Scholar]
  34. Vassilev P. M., Scheuer T., Catterall W. A. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science. 1988 Sep 23;241(4873):1658–1661. doi: 10.1126/science.241.4873.1658. [DOI] [PubMed] [Google Scholar]
  35. West J. W., Numann R., Murphy B. J., Scheuer T., Catterall W. A. A phosphorylation site in the Na+ channel required for modulation by protein kinase C. Science. 1991 Nov 8;254(5033):866–868. doi: 10.1126/science.1658937. [DOI] [PubMed] [Google Scholar]
  36. Yang J., Barchi R. Phosphorylation of the rat skeletal muscle sodium channel by cyclic AMP-dependent protein kinase. J Neurochem. 1990 Mar;54(3):954–962. doi: 10.1111/j.1471-4159.1990.tb02343.x. [DOI] [PubMed] [Google Scholar]
  37. Zhou J. Y., Potts J. F., Trimmer J. S., Agnew W. S., Sigworth F. J. Multiple gating modes and the effect of modulating factors on the microI sodium channel. Neuron. 1991 Nov;7(5):775–785. doi: 10.1016/0896-6273(91)90280-d. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES