Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Dec 7;70(Pt 1):o22–o23. doi: 10.1107/S1600536813032765

5′′-Benzyl­idene-5-chloro-1′,1′′-dimethyl-4′-phenyl­dispiro­[indoline-3,2′-pyrrolidine-3′,3′′-piperidine]-2,4′′-dione

I S Ahmed Farag a,, Adel S Girgis b, A A Ramadan c, A M Moustafa a, Edward R T Tiekink d,*
PMCID: PMC4029213  PMID: 24855467

Abstract

The title compound, C30H28ClN3O2, features two spiro links, one connecting the piperidine and pyrrolidine rings, and the other connecting the pyrrolidine ring and indole residue. The configuration about the ethene bond is E. The piperidine ring adopts a half-chair conformation where the C atom connected to the spiro-C atom lies 0.713 (3) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.086 Å). The pyrrolidine ring has an envelope conformation with the flap atom being the methyl­ene C atom. Centrosymmetric eight-membered {⋯HNCO}2 amide synthons feature in the crystal packing. These are consolidated into a three-dimensional architecture by phen­yl–pyrrolidine C—H⋯N and chloro­benzene–pyrrolidine-bound phenyl C—H⋯π inter­actions.

Related literature  

For the biological activity of related spiro­pyrrolidine analogues, see: Girgis et al. (2012); Kumar et al. (2008). For related structural studies, see: Moustafa et al. (2012). For the synthesis of the precursor mol­ecule, see: Al-Omary et al. (2012).graphic file with name e-70-00o22-scheme1.jpg

Experimental  

Crystal data  

  • C30H28ClN3O2

  • M r = 498.00

  • Monoclinic, Inline graphic

  • a = 10.5028 (3) Å

  • b = 20.4117 (6) Å

  • c = 11.9951 (4) Å

  • β = 94.877 (1)°

  • V = 2562.20 (14) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.18 mm−1

  • T = 293 K

  • 0.52 × 0.22 × 0.15 mm

Data collection  

  • Nonius 590 KappaCCD diffractometer

  • 10395 measured reflections

  • 5842 independent reflections

  • 2547 reflections with I > 2σ(I)

  • R int = 0.066

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.052

  • wR(F 2) = 0.137

  • S = 0.94

  • 5842 reflections

  • 327 parameters

  • H-atom parameters constrained

  • Δρmax = 0.18 e Å−3

  • Δρmin = −0.35 e Å−3

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536813032765/hg5367sup1.cif

e-70-00o22-sup1.cif (26.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032765/hg5367Isup2.hkl

e-70-00o22-Isup2.hkl (280.2KB, hkl)

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the C25–C30 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
N3—H3n⋯O2i 0.86 2.01 2.854 (3) 165
C14—H14⋯N2ii 0.93 2.58 3.480 (4) 163
C20—H20⋯Cg1iii 0.93 2.70 3.268 (3) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

This study was supported financially by the Science and Technology Development Fund (STDF), Egypt (grant No. 1133).

supplementary crystallographic information

1. Introduction

2. Experimental

2.1. Synthesis and crystallization

A mixture of equimolar amounts of 3E,5E-1-methyl-3,5-bis­(phenyl­methyl­idene)-4-piperidone (5 mmol), prepared by a literature procedure (Al-Omary et al., 2012), 5-chloro­isatin and sarcosine in absolute ethanol (25 ml) was boiled under reflux (TLC monitoring). The separated solid was collected and crystallized from n-butanol affording (I). Reaction time 9 h. Colourless crystals. M.pt: 512–514 K. Yield 88%. Anal. Calcd. for C30H28ClN3O2 (498.03): C, 72.35; H, 5.67; N, 8.44. Found: C, 72.56; H, 5.81; N, 8.67. IR: νmax/cm-1: 3168 (N—H); 1688 (C═O); 1597, 1457 (C═C).

2.2. Refinement

The C-bound H atoms were geometrically placed (C—H = 0.93–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). The N-bound H-atoms were treated similarly with N—H = 0.86 Å, and with Uiso(H) = 1.2Ueq(N).

3. Results and discussion

In connection with on-going studies of spiro­pyrrolidine derivatives (Girgis et al. 2012; Moustafa et al. 2012), the title compound, (I), was synthesised and characterised crystallographically. These compounds have biological activity and the structure of the skeltal structure is well established (Kumar et al. 2008).

There are two spiro links in the molecule, Fig. 1, i) where the piperidine and pyrrolidine rings are connected at C1, and ii) where the pyrrolidine ring and indole residue are connected at C6. The phenyl­methyl­idene functional group is connected to the piperidine ring at position C4 while the pyrrolidine-bound aryl ring is attached at C8. The conformation about the C4═C11 double bond is E. The sum of the angles around the piperidine-N1 atom is approximately 333° confirming its sp3 character. The piperidine ring adopts a half-chair conformation where the C2 atom lies 0.713 (3) Å out of the plane of the remaining five atoms (r.m.s. deviation = 0.086 Å). The C6 and C8 atoms occupy axial and equatorial positions with respect to the piperidine ring, the phenyl­methyl­idene residue occupies an equatorial position, and the N-bound methyl substituent is equatorial. The pyrrolidine ring has an envelope conformation with the flap atom being the C7 atom which lies 0.648 (3) Å out of the plane of the remaining four atoms (r.m.s. deviation = 0.026 Å). Finally, the indole fused ring system is planar with a r.m.s. deviation = 0.051 Å.

The most prominent feature of the crystal packing of is the formation of centrosymmetric eight-membered {···HNCO}2 synthons owing to the self-association of molecules via hydrogen bonding between amide groups, Table 1. The dimers are connected into a supra­molecular chain parallel to the b axis by phenyl-C–H···N (pyrrolidine) inter­actions and these are consolidated into a three-dimensional architecture by (chloro­benzene)C—H···π (pyrrolidine-bound phenyl), edge-to-face, inter­actions; a view of the unit cell contents is shown in Fig. 2.

Figures

Fig. 1.

Fig. 1.

The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

A view in projection down the c axis of the unit-cell contents for (I). The N—H···O, C—H···N and C—H···π interactions are shown as orange, blue and purple dashed lines, respectively.

Crystal data

C30H28ClN3O2 F(000) = 1048
Mr = 498.00 Dx = 1.291 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2yn Cell parameters from 5029 reflections
a = 10.5028 (3) Å θ = 2.9–27.5°
b = 20.4117 (6) Å µ = 0.18 mm1
c = 11.9951 (4) Å T = 293 K
β = 94.877 (1)° Block, colourless
V = 2562.20 (14) Å3 0.52 × 0.22 × 0.15 mm
Z = 4

Data collection

Nonius 590 KappaCCD diffractometer 2547 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.066
Graphite monochromator θmax = 27.5°, θmin = 3.2°
φ and ω scans h = −13→13
10395 measured reflections k = −24→26
5842 independent reflections l = −15→15

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0569P)2] where P = (Fo2 + 2Fc2)/3
5842 reflections (Δ/σ)max = 0.001
327 parameters Δρmax = 0.18 e Å3
0 restraints Δρmin = −0.35 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 1.05716 (7) 0.16826 (4) −0.06845 (7) 0.0777 (3)
O1 0.70008 (15) 0.22207 (8) 0.17686 (15) 0.0518 (5)
O2 0.83631 (15) 0.01572 (8) 0.45243 (14) 0.0501 (5)
N1 0.87248 (16) 0.16478 (9) 0.47693 (16) 0.0395 (5)
N2 0.73065 (16) 0.03868 (9) 0.21124 (16) 0.0425 (5)
N3 1.01454 (17) 0.04625 (9) 0.36752 (17) 0.0441 (5)
H3n 1.0711 0.0286 0.4142 0.053*
C1 0.72419 (19) 0.13839 (11) 0.31799 (19) 0.0354 (6)
C2 0.7398 (2) 0.14837 (11) 0.44474 (19) 0.0389 (6)
H2A 0.6845 0.1835 0.4659 0.047*
H2B 0.7165 0.1086 0.4825 0.047*
C3 0.8953 (2) 0.23259 (11) 0.4469 (2) 0.0425 (6)
H3A 0.9855 0.2423 0.4618 0.051*
H3B 0.8485 0.2612 0.4935 0.051*
C4 0.8552 (2) 0.24660 (11) 0.32605 (19) 0.0370 (6)
C5 0.7557 (2) 0.20414 (11) 0.2654 (2) 0.0377 (6)
C6 0.81725 (19) 0.08258 (11) 0.27869 (19) 0.0364 (6)
C7 0.6081 (2) 0.04033 (11) 0.2593 (2) 0.0463 (7)
H7A 0.6121 0.0177 0.3307 0.056*
H7B 0.5409 0.0212 0.2091 0.056*
C8 0.58871 (19) 0.11328 (11) 0.2732 (2) 0.0391 (6)
H8 0.5710 0.1315 0.1979 0.047*
C9 0.9106 (2) 0.15392 (13) 0.5956 (2) 0.0562 (7)
H9A 0.8554 0.1784 0.6401 0.084*
H9B 0.9972 0.1681 0.6124 0.084*
H9C 0.9041 0.1081 0.6124 0.084*
C10 0.7805 (2) −0.02622 (13) 0.1881 (2) 0.0615 (8)
H10A 0.8615 −0.0219 0.1573 0.092*
H10B 0.7216 −0.0485 0.1354 0.092*
H10C 0.7911 −0.0510 0.2562 0.092*
C11 0.9050 (2) 0.29475 (11) 0.2683 (2) 0.0423 (6)
H11 0.8740 0.2975 0.1935 0.051*
C12 1.0017 (2) 0.34419 (11) 0.3053 (2) 0.0408 (6)
C13 1.0215 (2) 0.36746 (13) 0.4136 (2) 0.0546 (7)
H13 0.9709 0.3519 0.4678 0.066*
C14 1.1149 (3) 0.41337 (14) 0.4432 (3) 0.0657 (8)
H14 1.1273 0.4279 0.5168 0.079*
C15 1.1892 (3) 0.43743 (14) 0.3646 (3) 0.0658 (8)
H15 1.2537 0.4674 0.3849 0.079*
C16 1.1685 (3) 0.41725 (14) 0.2555 (3) 0.0667 (9)
H16 1.2169 0.4347 0.2012 0.080*
C17 1.0760 (2) 0.37125 (12) 0.2266 (2) 0.0540 (7)
H17 1.0627 0.3579 0.1524 0.065*
C18 0.8882 (2) 0.04577 (11) 0.3795 (2) 0.0407 (6)
C19 1.0428 (2) 0.07885 (11) 0.2700 (2) 0.0385 (6)
C20 1.1587 (2) 0.08588 (12) 0.2266 (2) 0.0485 (7)
H20 1.2336 0.0717 0.2662 0.058*
C21 1.1613 (2) 0.11466 (12) 0.1225 (2) 0.0524 (7)
H21 1.2388 0.1201 0.0915 0.063*
C22 1.0499 (2) 0.13532 (12) 0.0645 (2) 0.0478 (7)
C23 0.9324 (2) 0.12955 (11) 0.1090 (2) 0.0435 (6)
H23 0.8577 0.1440 0.0693 0.052*
C24 0.9298 (2) 0.10180 (11) 0.2136 (2) 0.0368 (6)
C25 0.4792 (2) 0.13400 (12) 0.3399 (2) 0.0394 (6)
C26 0.4383 (2) 0.09737 (14) 0.4274 (2) 0.0544 (7)
H26 0.4793 0.0582 0.4477 0.065*
C27 0.3363 (2) 0.11858 (17) 0.4853 (2) 0.0652 (8)
H27 0.3094 0.0935 0.5436 0.078*
C28 0.2756 (3) 0.17634 (18) 0.4566 (3) 0.0722 (9)
H28 0.2083 0.1907 0.4959 0.087*
C29 0.3145 (3) 0.21279 (15) 0.3698 (3) 0.0701 (9)
H29 0.2731 0.2518 0.3497 0.084*
C30 0.4153 (2) 0.19161 (13) 0.3119 (2) 0.0553 (7)
H30 0.4406 0.2167 0.2529 0.066*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0823 (5) 0.0892 (6) 0.0655 (6) 0.0142 (4) 0.0285 (4) 0.0289 (4)
O1 0.0515 (10) 0.0547 (11) 0.0467 (12) −0.0077 (8) −0.0102 (9) 0.0147 (9)
O2 0.0486 (10) 0.0543 (11) 0.0466 (12) −0.0018 (9) −0.0003 (9) 0.0159 (9)
N1 0.0364 (11) 0.0465 (13) 0.0341 (13) −0.0047 (9) −0.0047 (9) 0.0055 (10)
N2 0.0362 (11) 0.0430 (13) 0.0475 (14) −0.0005 (10) −0.0004 (10) −0.0057 (10)
N3 0.0350 (11) 0.0538 (14) 0.0420 (14) 0.0067 (10) −0.0051 (10) 0.0087 (10)
C1 0.0314 (12) 0.0416 (15) 0.0326 (15) −0.0011 (11) −0.0019 (10) 0.0045 (12)
C2 0.0385 (13) 0.0408 (15) 0.0369 (16) −0.0052 (11) 0.0010 (11) 0.0029 (12)
C3 0.0380 (13) 0.0440 (16) 0.0445 (17) −0.0070 (11) −0.0019 (11) 0.0012 (13)
C4 0.0345 (13) 0.0433 (15) 0.0328 (15) −0.0015 (11) 0.0004 (11) 0.0029 (12)
C5 0.0338 (13) 0.0426 (15) 0.0365 (17) 0.0044 (11) 0.0027 (12) 0.0039 (13)
C6 0.0344 (12) 0.0389 (14) 0.0349 (15) −0.0007 (11) −0.0032 (11) 0.0030 (11)
C7 0.0381 (14) 0.0516 (17) 0.0479 (17) −0.0072 (12) −0.0034 (12) −0.0004 (13)
C8 0.0333 (12) 0.0450 (16) 0.0378 (15) −0.0002 (11) −0.0033 (11) 0.0037 (12)
C9 0.0597 (16) 0.0632 (19) 0.0434 (19) −0.0088 (14) −0.0096 (13) 0.0069 (14)
C10 0.0593 (17) 0.0547 (19) 0.070 (2) −0.0006 (14) 0.0051 (15) −0.0124 (15)
C11 0.0415 (14) 0.0472 (16) 0.0379 (16) 0.0002 (13) 0.0014 (12) −0.0011 (13)
C12 0.0403 (13) 0.0411 (15) 0.0405 (17) −0.0034 (12) 0.0010 (12) 0.0031 (13)
C13 0.0698 (18) 0.0511 (17) 0.0429 (19) −0.0159 (15) 0.0052 (14) 0.0042 (14)
C14 0.085 (2) 0.060 (2) 0.049 (2) −0.0203 (17) −0.0112 (16) 0.0024 (16)
C15 0.0552 (18) 0.060 (2) 0.080 (3) −0.0204 (14) −0.0069 (17) 0.0028 (18)
C16 0.0612 (18) 0.066 (2) 0.076 (3) −0.0189 (16) 0.0223 (17) −0.0040 (18)
C17 0.0590 (16) 0.0555 (17) 0.0490 (19) −0.0108 (15) 0.0136 (14) −0.0047 (15)
C18 0.0404 (15) 0.0385 (15) 0.0424 (17) 0.0005 (12) −0.0014 (12) 0.0041 (13)
C19 0.0393 (14) 0.0391 (15) 0.0363 (16) 0.0001 (11) −0.0004 (12) −0.0020 (12)
C20 0.0363 (14) 0.0548 (17) 0.0537 (19) 0.0049 (12) 0.0003 (13) −0.0009 (14)
C21 0.0422 (15) 0.0568 (18) 0.060 (2) −0.0043 (13) 0.0140 (14) −0.0018 (15)
C22 0.0522 (16) 0.0494 (17) 0.0430 (18) 0.0022 (13) 0.0120 (14) 0.0046 (13)
C23 0.0407 (14) 0.0439 (16) 0.0450 (17) 0.0038 (12) −0.0009 (12) 0.0048 (13)
C24 0.0375 (13) 0.0371 (14) 0.0354 (16) 0.0005 (11) 0.0001 (11) −0.0005 (12)
C25 0.0291 (12) 0.0450 (16) 0.0430 (17) −0.0059 (12) −0.0040 (11) −0.0003 (13)
C26 0.0436 (15) 0.0665 (19) 0.0527 (19) −0.0041 (14) 0.0013 (14) 0.0088 (15)
C27 0.0514 (17) 0.095 (3) 0.050 (2) −0.0111 (17) 0.0109 (15) −0.0051 (17)
C28 0.0448 (17) 0.096 (3) 0.077 (3) −0.0018 (18) 0.0135 (16) −0.030 (2)
C29 0.0516 (18) 0.063 (2) 0.097 (3) 0.0026 (15) 0.0102 (18) −0.0110 (19)
C30 0.0409 (15) 0.0537 (18) 0.071 (2) −0.0044 (14) 0.0042 (14) −0.0004 (15)

Geometric parameters (Å, º)

Cl1—C22 1.738 (3) C10—H10C 0.9600
O1—C5 1.224 (3) C11—C12 1.473 (3)
O2—C18 1.232 (3) C11—H11 0.9300
N1—C2 1.453 (3) C12—C13 1.382 (3)
N1—C3 1.455 (3) C12—C17 1.390 (3)
N1—C9 1.463 (3) C13—C14 1.381 (4)
N2—C7 1.454 (3) C13—H13 0.9300
N2—C10 1.460 (3) C14—C15 1.366 (4)
N2—C6 1.470 (3) C14—H14 0.9300
N3—C18 1.347 (3) C15—C16 1.371 (4)
N3—C19 1.400 (3) C15—H15 0.9300
N3—H3n 0.8600 C16—C17 1.374 (3)
C1—C5 1.531 (3) C16—H16 0.9300
C1—C2 1.529 (3) C17—H17 0.9300
C1—C8 1.564 (3) C19—C20 1.371 (3)
C1—C6 1.598 (3) C19—C24 1.396 (3)
C2—H2A 0.9700 C20—C21 1.382 (3)
C2—H2B 0.9700 C20—H20 0.9300
C3—C4 1.502 (3) C21—C22 1.375 (3)
C3—H3A 0.9700 C21—H21 0.9300
C3—H3B 0.9700 C22—C23 1.391 (3)
C4—C11 1.334 (3) C23—C24 1.380 (3)
C4—C5 1.498 (3) C23—H23 0.9300
C6—C24 1.522 (3) C25—C30 1.381 (3)
C6—C18 1.559 (3) C25—C26 1.386 (3)
C7—C8 1.514 (3) C26—C27 1.394 (3)
C7—H7A 0.9700 C26—H26 0.9300
C7—H7B 0.9700 C27—C28 1.370 (4)
C8—C25 1.516 (3) C27—H27 0.9300
C8—H8 0.9800 C28—C29 1.370 (4)
C9—H9A 0.9600 C28—H28 0.9300
C9—H9B 0.9600 C29—C30 1.384 (4)
C9—H9C 0.9600 C29—H29 0.9300
C10—H10A 0.9600 C30—H30 0.9300
C10—H10B 0.9600
C2—N1—C3 109.14 (18) H10B—C10—H10C 109.5
C2—N1—C9 113.61 (17) C4—C11—C12 129.7 (2)
C3—N1—C9 110.35 (18) C4—C11—H11 115.2
C7—N2—C10 116.12 (18) C12—C11—H11 115.2
C7—N2—C6 107.14 (17) C13—C12—C17 117.0 (2)
C10—N2—C6 116.30 (18) C13—C12—C11 124.3 (2)
C18—N3—C19 111.96 (19) C17—C12—C11 118.7 (2)
C18—N3—H3n 124.0 C14—C13—C12 121.5 (2)
C19—N3—H3n 124.0 C14—C13—H13 119.3
C5—C1—C2 106.50 (19) C12—C13—H13 119.3
C5—C1—C8 111.60 (18) C15—C14—C13 120.1 (3)
C2—C1—C8 113.73 (17) C15—C14—H14 120.0
C5—C1—C6 110.15 (16) C13—C14—H14 120.0
C2—C1—C6 111.83 (18) C14—C15—C16 119.8 (3)
C8—C1—C6 103.10 (17) C14—C15—H15 120.1
N1—C2—C1 108.31 (17) C16—C15—H15 120.1
N1—C2—H2A 110.0 C15—C16—C17 119.9 (3)
C1—C2—H2A 110.0 C15—C16—H16 120.1
N1—C2—H2B 110.0 C17—C16—H16 120.1
C1—C2—H2B 110.0 C16—C17—C12 121.7 (3)
H2A—C2—H2B 108.4 C16—C17—H17 119.2
N1—C3—C4 112.41 (19) C12—C17—H17 119.2
N1—C3—H3A 109.1 O2—C18—N3 125.4 (2)
C4—C3—H3A 109.1 O2—C18—C6 125.4 (2)
N1—C3—H3B 109.1 N3—C18—C6 108.9 (2)
C4—C3—H3B 109.1 C20—C19—C24 121.8 (2)
H3A—C3—H3B 107.9 C20—C19—N3 128.7 (2)
C11—C4—C5 117.5 (2) C24—C19—N3 109.40 (19)
C11—C4—C3 123.4 (2) C19—C20—C21 118.2 (2)
C5—C4—C3 119.0 (2) C19—C20—H20 120.9
O1—C5—C4 120.7 (2) C21—C20—H20 120.9
O1—C5—C1 121.0 (2) C22—C21—C20 120.4 (2)
C4—C5—C1 118.3 (2) C22—C21—H21 119.8
N2—C6—C24 110.25 (18) C20—C21—H21 119.8
N2—C6—C18 111.47 (18) C21—C22—C23 121.6 (2)
C24—C6—C18 100.44 (17) C21—C22—Cl1 118.77 (19)
N2—C6—C1 103.40 (16) C23—C22—Cl1 119.6 (2)
C24—C6—C1 119.26 (18) C24—C23—C22 118.1 (2)
C18—C6—C1 112.25 (18) C24—C23—H23 121.0
N2—C7—C8 101.46 (17) C22—C23—H23 121.0
N2—C7—H7A 111.5 C23—C24—C19 119.8 (2)
C8—C7—H7A 111.5 C23—C24—C6 130.4 (2)
N2—C7—H7B 111.5 C19—C24—C6 109.3 (2)
C8—C7—H7B 111.5 C30—C25—C26 117.9 (2)
H7A—C7—H7B 109.3 C30—C25—C8 118.9 (2)
C7—C8—C25 116.62 (19) C26—C25—C8 123.2 (2)
C7—C8—C1 103.47 (17) C25—C26—C27 120.7 (3)
C25—C8—C1 115.89 (19) C25—C26—H26 119.7
C7—C8—H8 106.7 C27—C26—H26 119.7
C25—C8—H8 106.7 C28—C27—C26 120.2 (3)
C1—C8—H8 106.7 C28—C27—H27 119.9
N1—C9—H9A 109.5 C26—C27—H27 119.9
N1—C9—H9B 109.5 C29—C28—C27 119.7 (3)
H9A—C9—H9B 109.5 C29—C28—H28 120.1
N1—C9—H9C 109.5 C27—C28—H28 120.1
H9A—C9—H9C 109.5 C28—C29—C30 120.1 (3)
H9B—C9—H9C 109.5 C28—C29—H29 119.9
N2—C10—H10A 109.5 C30—C29—H29 119.9
N2—C10—H10B 109.5 C25—C30—C29 121.4 (3)
H10A—C10—H10B 109.5 C25—C30—H30 119.3
N2—C10—H10C 109.5 C29—C30—H30 119.3
H10A—C10—H10C 109.5
C3—N1—C2—C1 76.1 (2) C11—C12—C13—C14 179.2 (2)
C9—N1—C2—C1 −160.35 (19) C12—C13—C14—C15 0.8 (4)
C5—C1—C2—N1 −62.7 (2) C13—C14—C15—C16 1.8 (4)
C8—C1—C2—N1 173.98 (18) C14—C15—C16—C17 −2.2 (4)
C6—C1—C2—N1 57.7 (2) C15—C16—C17—C12 0.0 (4)
C2—N1—C3—C4 −53.4 (2) C13—C12—C17—C16 2.4 (4)
C9—N1—C3—C4 −178.89 (18) C11—C12—C17—C16 −179.5 (2)
N1—C3—C4—C11 −155.0 (2) C19—N3—C18—O2 173.4 (2)
N1—C3—C4—C5 24.1 (3) C19—N3—C18—C6 −0.1 (3)
C11—C4—C5—O1 −17.4 (3) N2—C6—C18—O2 −56.8 (3)
C3—C4—C5—O1 163.4 (2) C24—C6—C18—O2 −173.6 (2)
C11—C4—C5—C1 163.4 (2) C1—C6—C18—O2 58.7 (3)
C3—C4—C5—C1 −15.7 (3) N2—C6—C18—N3 116.7 (2)
C2—C1—C5—O1 −145.8 (2) C24—C6—C18—N3 0.0 (2)
C8—C1—C5—O1 −21.2 (3) C1—C6—C18—N3 −127.80 (19)
C6—C1—C5—O1 92.7 (2) C18—N3—C19—C20 −175.8 (2)
C2—C1—C5—C4 33.3 (2) C18—N3—C19—C24 0.3 (3)
C8—C1—C5—C4 157.97 (19) C24—C19—C20—C21 −2.2 (4)
C6—C1—C5—C4 −88.1 (2) N3—C19—C20—C21 173.5 (2)
C7—N2—C6—C24 −160.87 (19) C19—C20—C21—C22 −0.2 (4)
C10—N2—C6—C24 67.3 (3) C20—C21—C22—C23 1.6 (4)
C7—N2—C6—C18 88.5 (2) C20—C21—C22—Cl1 −177.5 (2)
C10—N2—C6—C18 −43.3 (3) C21—C22—C23—C24 −0.5 (4)
C7—N2—C6—C1 −32.3 (2) Cl1—C22—C23—C24 178.52 (19)
C10—N2—C6—C1 −164.09 (19) C22—C23—C24—C19 −1.8 (3)
C5—C1—C6—N2 −114.14 (19) C22—C23—C24—C6 −173.0 (2)
C2—C1—C6—N2 127.64 (18) C20—C19—C24—C23 3.2 (3)
C8—C1—C6—N2 5.1 (2) N3—C19—C24—C23 −173.2 (2)
C5—C1—C6—C24 8.6 (3) C20—C19—C24—C6 176.1 (2)
C2—C1—C6—C24 −109.6 (2) N3—C19—C24—C6 −0.3 (3)
C8—C1—C6—C24 127.8 (2) N2—C6—C24—C23 54.4 (3)
C5—C1—C6—C18 125.6 (2) C18—C6—C24—C23 172.1 (2)
C2—C1—C6—C18 7.4 (2) C1—C6—C24—C23 −64.9 (3)
C8—C1—C6—C18 −115.19 (19) N2—C6—C24—C19 −117.5 (2)
C10—N2—C7—C8 179.1 (2) C18—C6—C24—C19 0.2 (2)
C6—N2—C7—C8 47.2 (2) C1—C6—C24—C19 123.2 (2)
N2—C7—C8—C25 −170.10 (19) C7—C8—C25—C30 −147.6 (2)
N2—C7—C8—C1 −41.6 (2) C1—C8—C25—C30 90.2 (3)
C5—C1—C8—C7 140.24 (19) C7—C8—C25—C26 31.5 (3)
C2—C1—C8—C7 −99.2 (2) C1—C8—C25—C26 −90.7 (3)
C6—C1—C8—C7 22.0 (2) C30—C25—C26—C27 −0.4 (4)
C5—C1—C8—C25 −90.8 (2) C8—C25—C26—C27 −179.5 (2)
C2—C1—C8—C25 29.7 (3) C25—C26—C27—C28 −0.4 (4)
C6—C1—C8—C25 150.97 (19) C26—C27—C28—C29 0.8 (4)
C5—C4—C11—C12 179.0 (2) C27—C28—C29—C30 −0.5 (4)
C3—C4—C11—C12 −1.9 (4) C26—C25—C30—C29 0.7 (4)
C4—C11—C12—C13 −28.2 (4) C8—C25—C30—C29 179.9 (2)
C4—C11—C12—C17 153.9 (2) C28—C29—C30—C25 −0.3 (4)
C17—C12—C13—C14 −2.9 (4)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C25–C30 ring.

D—H···A D—H H···A D···A D—H···A
N3—H3n···O2i 0.86 2.01 2.854 (3) 165
C14—H14···N2ii 0.93 2.58 3.480 (4) 163
C20—H20···Cg1iii 0.93 2.70 3.268 (3) 121

Symmetry codes: (i) −x+2, −y, −z+1; (ii) x+1/2, −y+1/2, z+1/2; (iii) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5367).

References

  1. Al-Omary, F. A. M., Hassan, G. S., El-Messery, S. M. & El-Subbagh, H. I. (2012). Eur. J. Med. Chem. 47, 65–72. [DOI] [PubMed]
  2. Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Girgis, A. S., Tala, S. R., Oliferenko, P. V., Oliferenko, A. A. & Katritzky, A. R. (2012). Eur. J. Med. Chem. 50 1–8. [DOI] [PubMed]
  5. Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  6. Kumar, R. R., Perumal, S., Senthilkumar, P., Yoeeswair, P. & Sriram, D. (2008). J. Med. Chem. 51, 5731–5735. [DOI] [PubMed]
  7. Moustafa, A. M., Girgis, A. S., Shalaby, S. M. & Tiekink, E. R. T. (2012). Acta Cryst. E68, o2197–o2198. [DOI] [PMC free article] [PubMed]
  8. Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) general, I. DOI: 10.1107/S1600536813032765/hg5367sup1.cif

e-70-00o22-sup1.cif (26.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536813032765/hg5367Isup2.hkl

e-70-00o22-Isup2.hkl (280.2KB, hkl)

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES