Abstract
An assay that allows measurement of absolute induction frequencies for DNA double-strand breaks (dsbs) in defined regions of the genome and that quantitates rejoining of correct DNA ends has been used to study repair of dsbs in normal human fibroblasts after x-irradiation. The approach involves hybridization of single-copy DNA probes to Not I restriction fragments separated according to size by pulsed-field gel electrophoresis. Induction of dsbs is quantitated from the decrease in the intensity of the hybridizing restriction fragment and an accumulation of a smear below the band. Rejoining of dsbs results in reconstitution of the intact restriction fragment only if correct DNA ends are joined. By comparing results from this technique with results from a conventional electrophoresis assay that detects all rejoining events, it is possible to quantitate the misrejoining frequency. Three Not I fragments on the long arm of chromosome 21 were investigated with regard to dsb induction, yielding an identical induction rate of 5.8 X 10(-3) break per megabase pair per Gy. Correct dsb rejoining was measured for two of these Not I fragments after initial doses of 80 and 160 Gy. The misrejoining frequency was about 25% for both fragments and was independent of dose. This result appears to be representative for the whole genome as shown by analysis of the entire Not I fragment distribution. The correct rejoining events primarily occurred within the first 2 h, while the misrejoining kinetics included a much slower component, with about half of the events occurring between 2 and 24 h. These misrejoining kinetics are similar to those previously reported for production of exchange aberrations in interphase chromosomes.
Full text
PDF




Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bedford J. S., Cornforth M. N. Relationship between the recovery from sublethal X-ray damage and the rejoining of chromosome breaks in normal human fibroblasts. Radiat Res. 1987 Sep;111(3):406–423. [PubMed] [Google Scholar]
- Bedford J. S. Sublethal damage, potentially lethal damage, and chromosomal aberrations in mammalian cells exposed to ionizing radiations. Int J Radiat Oncol Biol Phys. 1991 Nov;21(6):1457–1469. doi: 10.1016/0360-3016(91)90320-4. [DOI] [PubMed] [Google Scholar]
- Biedermann K. A., Sun J. R., Giaccia A. J., Tosto L. M., Brown J. M. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1394–1397. doi: 10.1073/pnas.88.4.1394. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Blunt T., Finnie N. J., Taccioli G. E., Smith G. C., Demengeot J., Gottlieb T. M., Mizuta R., Varghese A. J., Alt F. W., Jeggo P. A. Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell. 1995 Mar 10;80(5):813–823. doi: 10.1016/0092-8674(95)90360-7. [DOI] [PubMed] [Google Scholar]
- Brown J. M., Evans J. W., Kovacs M. S. Mechanism of chromosome exchange formation in human fibroblasts: insights from "chromosome painting". Environ Mol Mutagen. 1993;22(4):218–224. doi: 10.1002/em.2850220407. [DOI] [PubMed] [Google Scholar]
- Cornforth M. N., Bedford J. S. A quantitative comparison of potentially lethal damage repair and the rejoining of interphase chromosome breaks in low passage normal human fibroblasts. Radiat Res. 1987 Sep;111(3):385–405. [PubMed] [Google Scholar]
- Cornforth M. N., Bedford J. S. On the nature of a defect in cells from individuals with ataxia-telangiectasia. Science. 1985 Mar 29;227(4694):1589–1591. doi: 10.1126/science.3975628. [DOI] [PubMed] [Google Scholar]
- Cornforth M. N., Goodwin E. H. The dose-dependent fragmentation of chromatin in human fibroblasts by 3.5-MeV alpha particles from 238Pu: experimental and theoretical considerations pertaining to single-track effects. Radiat Res. 1991 Jul;127(1):64–74. [PubMed] [Google Scholar]
- Evans H. H., Ricanati M., Horng M. F. Deficiency in DNA repair in mouse lymphoma strain L5178Y-S. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7562–7566. doi: 10.1073/pnas.84.21.7562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gardiner K., Horisberger M., Kraus J., Tantravahi U., Korenberg J., Rao V., Reddy S., Patterson D. Analysis of human chromosome 21: correlation of physical and cytogenetic maps; gene and CpG island distributions. EMBO J. 1990 Jan;9(1):25–34. doi: 10.1002/j.1460-2075.1990.tb08076.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Getts R. C., Stamato T. D. Absence of a Ku-like DNA end binding activity in the xrs double-strand DNA repair-deficient mutant. J Biol Chem. 1994 Jun 10;269(23):15981–15984. [PubMed] [Google Scholar]
- Grosovsky A. J., Little J. B. Evidence for linear response for the induction of mutations in human cells by x-ray exposures below 10 rads. Proc Natl Acad Sci U S A. 1985 Apr;82(7):2092–2095. doi: 10.1073/pnas.82.7.2092. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ichikawa H., Hosoda F., Arai Y., Shimizu K., Ohira M., Ohki M. A NotI restriction map of the entire long arm of human chromosome 21. Nat Genet. 1993 Aug;4(4):361–366. doi: 10.1038/ng0893-361. [DOI] [PubMed] [Google Scholar]
- Ichikawa H., Shimizu K., Saito A., Wang D. N., Oliva R., Kobayashi H., Kaneko Y., Miyoshi H., Smith C. L., Cantor C. R. Long-distance restriction mapping of the proximal long arm of human chromosome 21 with Not I linking clones. Proc Natl Acad Sci U S A. 1992 Jan 1;89(1):23–27. doi: 10.1073/pnas.89.1.23. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Iliakis G., Blöcher D., Metzger L., Pantelias G. Comparison of DNA double-strand break rejoining as measured by pulsed field gel electrophoresis, neutral sucrose gradient centrifugation and non-unwinding filter elution in irradiated plateau-phase CHO cells. Int J Radiat Biol. 1991 Apr;59(4):927–939. doi: 10.1080/09553009114550821. [DOI] [PubMed] [Google Scholar]
- Iliakis G., Pantelias G. E., Okayasu R., Seaner R. 125IdUrd-induced chromosome fragments, assayed by premature chromosome condensation, and DNA double-strand breaks have similar repair kinetics in G1-phase CHO-cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1987 Nov;52(5):705–722. doi: 10.1080/09553008714552221. [DOI] [PubMed] [Google Scholar]
- Kirchgessner C. U., Patil C. K., Evans J. W., Cuomo C. A., Fried L. M., Carter T., Oettinger M. A., Brown J. M. DNA-dependent kinase (p350) as a candidate gene for the murine SCID defect. Science. 1995 Feb 24;267(5201):1178–1183. doi: 10.1126/science.7855601. [DOI] [PubMed] [Google Scholar]
- Kovacs M. S., Evans J. W., Johnstone I. M., Brown J. M. Radiation-induced damage, repair and exchange formation in different chromosomes of human fibroblasts determined by fluorescence in situ hybridization. Radiat Res. 1994 Jan;137(1):34–43. [PubMed] [Google Scholar]
- Lawrence S., Collins A., Keats B. J., Hulten M., Morton N. E. Integration of gene maps: chromosome 21. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7210–7214. doi: 10.1073/pnas.90.15.7210. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lee S. E., Pulaski C. R., He D. M., Benjamin D. M., Voss M., Um J., Hendrickson E. A. Isolation of mammalian cell mutants that are X-ray sensitive, impaired in DNA double-strand break repair and defective for V(D)J recombination. Mutat Res. 1995 May;336(3):279–291. doi: 10.1016/0921-8777(95)00002-2. [DOI] [PubMed] [Google Scholar]
- Löbrich M., Ikpeme S., Kiefer J. DNA double-strand break measurement in mammalian cells by pulsed-field gel electrophoresis: an approach using restriction enzymes and gene probing. Int J Radiat Biol. 1994 Jun;65(6):623–630. doi: 10.1080/09553009414550731. [DOI] [PubMed] [Google Scholar]
- Löbrich M., Ikpeme S., Kiefer J. Measurement of DNA double-strand breaks in mammalian cells by pulsed-field gel electrophoresis: a new approach using rarely cutting restriction enzymes. Radiat Res. 1994 May;138(2):186–192. [PubMed] [Google Scholar]
- Löbrich M., Rydberg B., Cooper P. K. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. II. Probing individual notI fragments by hybridization. Radiat Res. 1994 Aug;139(2):142–151. [PubMed] [Google Scholar]
- Morris T., Thacker J. Formation of large deletions by illegitimate recombination in the HPRT gene of primary human fibroblasts. Proc Natl Acad Sci U S A. 1993 Feb 15;90(4):1392–1396. doi: 10.1073/pnas.90.4.1392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Okayasu R., Iliakis G. Evidence that the product of the xrs gene is predominantly involved in the repair of a subset of radiation-induced interphase chromosome breaks rejoining with fast kinetics. Radiat Res. 1994 Apr;138(1):34–43. [PubMed] [Google Scholar]
- Peterson S. R., Kurimasa A., Oshimura M., Dynan W. S., Bradbury E. M., Chen D. J. Loss of the catalytic subunit of the DNA-dependent protein kinase in DNA double-strand-break-repair mutant mammalian cells. Proc Natl Acad Sci U S A. 1995 Apr 11;92(8):3171–3174. doi: 10.1073/pnas.92.8.3171. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Phillips J. W., Morgan W. F. Illegitimate recombination induced by DNA double-strand breaks in a mammalian chromosome. Mol Cell Biol. 1994 Sep;14(9):5794–5803. doi: 10.1128/mcb.14.9.5794. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rathmell W. K., Chu G. Involvement of the Ku autoantigen in the cellular response to DNA double-strand breaks. Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7623–7627. doi: 10.1073/pnas.91.16.7623. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Rydberg B., Löbrich M., Cooper P. K. DNA double-strand breaks induced by high-energy neon and iron ions in human fibroblasts. I. Pulsed-field gel electrophoresis method. Radiat Res. 1994 Aug;139(2):133–141. [PubMed] [Google Scholar]
- Taccioli G. E., Gottlieb T. M., Blunt T., Priestley A., Demengeot J., Mizuta R., Lehmann A. R., Alt F. W., Jackson S. P., Jeggo P. A. Ku80: product of the XRCC5 gene and its role in DNA repair and V(D)J recombination. Science. 1994 Sep 2;265(5177):1442–1445. doi: 10.1126/science.8073286. [DOI] [PubMed] [Google Scholar]
- Taccioli G. E., Rathbun G., Oltz E., Stamato T., Jeggo P. A., Alt F. W. Impairment of V(D)J recombination in double-strand break repair mutants. Science. 1993 Apr 9;260(5105):207–210. doi: 10.1126/science.8469973. [DOI] [PubMed] [Google Scholar]
- Wang D., Fang H., Cantor C. R., Smith C. L. A contiguous Not I restriction map of band q22.3 of human chromosome 21. Proc Natl Acad Sci U S A. 1992 Apr 15;89(8):3222–3226. doi: 10.1073/pnas.89.8.3222. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wang D., Smith C. L. Large-scale structure conservation along the entire long arm of human chromosome 21. Genomics. 1994 Apr;20(3):441–451. doi: 10.1006/geno.1994.1199. [DOI] [PubMed] [Google Scholar]
- Ward J. F. The yield of DNA double-strand breaks produced intracellularly by ionizing radiation: a review. Int J Radiat Biol. 1990 Jun;57(6):1141–1150. doi: 10.1080/09553009014551251. [DOI] [PubMed] [Google Scholar]