Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Dec 19;92(26):12075–12079. doi: 10.1073/pnas.92.26.12075

Selection of transduced CD34+ progenitors and enzymatic correction of cells from Gaucher patients, with bicistronic vectors.

M Migita 1, J A Medin 1, R Pawliuk 1, S Jacobson 1, J W Nagle 1, S Anderson 1, M Amiri 1, R K Humphries 1, S Karlsson 1
PMCID: PMC40299  PMID: 8618847

Abstract

The gene transfer efficiency of human hematopoietic stem cells is still inadequate for efficient gene therapy of most disorders. To overcome this problem, a selectable retroviral vector system for gene therapy has been developed for gene therapy of Gaucher disease. We constructed a bicistronic retroviral vector containing the human glucocerebrosidase (GC) cDNA and the human small cell surface antigen CD24 (243 bp). Expression of both cDNAs was controlled by the long terminal repeat enhancer/promoter of the Molony murine leukemia virus. The CD24 selectable marker was placed downstream of the GC cDNA and its translation was enhanced by inclusion of the long 5' untranslated region of encephalomyocarditis virus internal ribosomal entry site. Virus-producing GP+envAM12 cells were created by multiple supernatant transductions to create vector producer cells. The vector LGEC has a high titer and can drive expression of GC and the cell surface antigen CD24 simultaneously in transduced NIH 3T3 cells and Gaucher skin fibroblasts. These transduced cells have been successfully separated from untransduced cells by fluorescence-activated cell sorting, based on cell surface expression of CD24. Transduced and sorted NIH 3T3 cells showed higher GC enzyme activity than the unsorted population, demonstrating coordinated expression of both genes. Fibroblasts from Gaucher patients were transduced and sorted for CD24 expression, and GC enzyme activity was measured. The transduced sorted Gaucher fibroblasts had a marked increase in enzyme activity (149%) compared with virgin Gaucher fibroblasts (17% of normal GC enzyme activity). Efficient transduction of CD34+ hematopoietic progenitors (20-40%) was accomplished and fluorescence-activated cell sorted CD24(+)-expressing progenitors generated colonies, all of which (100%) were vector positive. The sorted, CD24-expressing progenitors generated erythroid burst-forming units, colony-forming units (CFU)-granulocyte, CFU-macrophage, CFU-granulocyte/macrophage, and CFU-mix hematopoietic colonies, demonstrating their ability to differentiate into these myeloid lineages in vitro. The transduced, sorted progenitors raised the GC enzyme levels in their progeny cells manyfold compared with untransduced CD34+ progenitors. Collectively, this demonstrates the development of high titer, selectable bicistronic vectors that allow isolation of transduced hematopoietic progenitors and cells that have been metabolically corrected.

Full text

PDF
12075

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abboud M., Xu F., LaVia M., Laver J. Study of early hematopoietic precursors in human cord blood. Exp Hematol. 1992 Oct;20(9):1043–1047. [PubMed] [Google Scholar]
  2. Adam M. A., Ramesh N., Miller A. D., Osborne W. R. Internal initiation of translation in retroviral vectors carrying picornavirus 5' nontranslated regions. J Virol. 1991 Sep;65(9):4985–4990. doi: 10.1128/jvi.65.9.4985-4990.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Aran J. M., Gottesman M. M., Pastan I. Drug-selected coexpression of human glucocerebrosidase and P-glycoprotein using a bicistronic vector. Proc Natl Acad Sci U S A. 1994 Apr 12;91(8):3176–3180. doi: 10.1073/pnas.91.8.3176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. BRADY R. O., KANFER J. N., SHAPIRO D. METABOLISM OF GLUCOCEREBROSIDES. II. EVIDENCE OF AN ENZYMATIC DEFICIENCY IN GAUCHER'S DISEASE. Biochem Biophys Res Commun. 1965 Jan 18;18:221–225. doi: 10.1016/0006-291x(65)90743-6. [DOI] [PubMed] [Google Scholar]
  5. Barton N. W., Brady R. O., Dambrosia J. M., Di Bisceglie A. M., Doppelt S. H., Hill S. C., Mankin H. J., Murray G. J., Parker R. I., Argoff C. E. Replacement therapy for inherited enzyme deficiency--macrophage-targeted glucocerebrosidase for Gaucher's disease. N Engl J Med. 1991 May 23;324(21):1464–1470. doi: 10.1056/NEJM199105233242104. [DOI] [PubMed] [Google Scholar]
  6. Barton N. W., Furbish F. S., Murray G. J., Garfield M., Brady R. O. Therapeutic response to intravenous infusions of glucocerebrosidase in a patient with Gaucher disease. Proc Natl Acad Sci U S A. 1990 Mar;87(5):1913–1916. doi: 10.1073/pnas.87.5.1913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Berenson R. J., Bensinger W. I., Hill R. S., Andrews R. G., Garcia-Lopez J., Kalamasz D. F., Still B. J., Spitzer G., Buckner C. D., Bernstein I. D. Engraftment after infusion of CD34+ marrow cells in patients with breast cancer or neuroblastoma. Blood. 1991 Apr 15;77(8):1717–1722. [PubMed] [Google Scholar]
  8. Beutler E. Gaucher disease: new molecular approaches to diagnosis and treatment. Science. 1992 May 8;256(5058):794–799. doi: 10.1126/science.1589760. [DOI] [PubMed] [Google Scholar]
  9. Bodine D. M., Moritz T., Donahue R. E., Luskey B. D., Kessler S. W., Martin D. I., Orkin S. H., Nienhuis A. W., Williams D. A. Long-term in vivo expression of a murine adenosine deaminase gene in rhesus monkey hematopoietic cells of multiple lineages after retroviral mediated gene transfer into CD34+ bone marrow cells. Blood. 1993 Oct 1;82(7):1975–1980. [PubMed] [Google Scholar]
  10. Bodine D. M., Seidel N. E., Gale M. S., Nienhuis A. W., Orlic D. Efficient retrovirus transduction of mouse pluripotent hematopoietic stem cells mobilized into the peripheral blood by treatment with granulocyte colony-stimulating factor and stem cell factor. Blood. 1994 Sep 1;84(5):1482–1491. [PubMed] [Google Scholar]
  11. Choi K., Frommel T. O., Stern R. K., Perez C. F., Kriegler M., Tsuruo T., Roninson I. B. Multidrug resistance after retroviral transfer of the human MDR1 gene correlates with P-glycoprotein density in the plasma membrane and is not affected by cytotoxic selection. Proc Natl Acad Sci U S A. 1991 Aug 15;88(16):7386–7390. doi: 10.1073/pnas.88.16.7386. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Correll P. H., Colilla S., Dave H. P., Karlsson S. High levels of human glucocerebrosidase activity in macrophages of long-term reconstituted mice after retroviral infection of hematopoietic stem cells. Blood. 1992 Jul 15;80(2):331–336. [PubMed] [Google Scholar]
  13. Correll P. H., Colilla S., Karlsson S. Retroviral vector design for long-term expression in murine hematopoietic cells in vivo. Blood. 1994 Sep 15;84(6):1812–1822. [PubMed] [Google Scholar]
  14. Correll P. H., Karlsson S. Towards therapy of Gaucher's disease by gene transfer into hematopoietic cells. Eur J Haematol. 1994 Nov;53(5):253–264. doi: 10.1111/j.1600-0609.1994.tb01317.x. [DOI] [PubMed] [Google Scholar]
  15. Crooks G. M., Kohn D. B. Growth factors increase amphotropic retrovirus binding to human CD34+ bone marrow progenitor cells. Blood. 1993 Dec 1;82(11):3290–3297. [PubMed] [Google Scholar]
  16. Danos O., Mulligan R. C. Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci U S A. 1988 Sep;85(17):6460–6464. doi: 10.1073/pnas.85.17.6460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Fink J. K., Correll P. H., Perry L. K., Brady R. O., Karlsson S. Correction of glucocerebrosidase deficiency after retroviral-mediated gene transfer into hematopoietic progenitor cells from patients with Gaucher disease. Proc Natl Acad Sci U S A. 1990 Mar;87(6):2334–2338. doi: 10.1073/pnas.87.6.2334. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Germann U. A., Gottesman M. M., Pastan I. Expression of a multidrug resistance-adenosine deaminase fusion gene. J Biol Chem. 1989 May 5;264(13):7418–7424. [PubMed] [Google Scholar]
  19. Grabowski G. A., Gatt S., Horowitz M. Acid beta-glucosidase: enzymology and molecular biology of Gaucher disease. Crit Rev Biochem Mol Biol. 1990;25(6):385–414. doi: 10.3109/10409239009090616. [DOI] [PubMed] [Google Scholar]
  20. Hobbs J. R., Jones K. H., Shaw P. J., Lindsay I., Hancock M. Beneficial effect of pre-transplant splenectomy on displacement bone marrow transplantation for Gaucher's syndrome. Lancet. 1987 May 16;1(8542):1111–1115. doi: 10.1016/s0140-6736(87)91673-4. [DOI] [PubMed] [Google Scholar]
  21. Hogge D. E., Humphries R. K. Gene transfer to primary normal and malignant human hemopoietic progenitors using recombinant retroviruses. Blood. 1987 Feb;69(2):611–617. [PubMed] [Google Scholar]
  22. Hough M. R., Takei F., Humphries R. K., Kay R. Defective development of thymocytes overexpressing the costimulatory molecule, heat-stable antigen. J Exp Med. 1994 Jan 1;179(1):177–184. doi: 10.1084/jem.179.1.177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Karlsson S. Treatment of genetic defects in hematopoietic cell function by gene transfer. Blood. 1991 Nov 15;78(10):2481–2492. [PubMed] [Google Scholar]
  24. Kay R., Rosten P. M., Humphries R. K. CD24, a signal transducer modulating B cell activation responses, is a very short peptide with a glycosyl phosphatidylinositol membrane anchor. J Immunol. 1991 Aug 15;147(4):1412–1416. [PubMed] [Google Scholar]
  25. Markowitz D., Goff S., Bank A. Construction and use of a safe and efficient amphotropic packaging cell line. Virology. 1988 Dec;167(2):400–406. [PubMed] [Google Scholar]
  26. Mavilio F., Ferrari G., Rossini S., Nobili N., Bonini C., Casorati G., Traversari C., Bordignon C. Peripheral blood lymphocytes as target cells of retroviral vector-mediated gene transfer. Blood. 1994 Apr 1;83(7):1988–1997. [PubMed] [Google Scholar]
  27. Moore K. A., Deisseroth A. B., Reading C. L., Williams D. E., Belmont J. W. Stromal support enhances cell-free retroviral vector transduction of human bone marrow long-term culture-initiating cells. Blood. 1992 Mar 15;79(6):1393–1399. [PubMed] [Google Scholar]
  28. Morgan R. A., Couture L., Elroy-Stein O., Ragheb J., Moss B., Anderson W. F. Retroviral vectors containing putative internal ribosome entry sites: development of a polycistronic gene transfer system and applications to human gene therapy. Nucleic Acids Res. 1992 Mar 25;20(6):1293–1299. doi: 10.1093/nar/20.6.1293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nolta J. A., Hanley M. B., Kohn D. B. Sustained human hematopoiesis in immunodeficient mice by cotransplantation of marrow stroma expressing human interleukin-3: analysis of gene transduction of long-lived progenitors. Blood. 1994 May 15;83(10):3041–3051. [PubMed] [Google Scholar]
  30. Nolta J. A., Yu X. J., Bahner I., Kohn D. B. Retroviral-mediated transfer of the human glucocerebrosidase gene into cultured Gaucher bone marrow. J Clin Invest. 1992 Aug;90(2):342–348. doi: 10.1172/JCI115868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Ohashi T., Boggs S., Robbins P., Bahnson A., Patrene K., Wei F. S., Wei J. F., Li J., Lucht L., Fei Y. Efficient transfer and sustained high expression of the human glucocerebrosidase gene in mice and their functional macrophages following transplantation of bone marrow transduced by a retroviral vector. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11332–11336. doi: 10.1073/pnas.89.23.11332. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Olsen J. C., Johnson L. G., Wong-Sun M. L., Moore K. L., Swanstrom R., Boucher R. C. Retrovirus-mediated gene transfer to cystic fibrosis airway epithelial cells: effect of selectable marker sequences on long-term expression. Nucleic Acids Res. 1993 Feb 11;21(3):663–669. doi: 10.1093/nar/21.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Palmer T. D., Hock R. A., Osborne W. R., Miller A. D. Efficient retrovirus-mediated transfer and expression of a human adenosine deaminase gene in diploid skin fibroblasts from an adenosine deaminase-deficient human. Proc Natl Acad Sci U S A. 1987 Feb;84(4):1055–1059. doi: 10.1073/pnas.84.4.1055. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Pawliuk R., Kay R., Lansdorp P., Humphries R. K. Selection of retrovirally transduced hematopoietic cells using CD24 as a marker of gene transfer. Blood. 1994 Nov 1;84(9):2868–2877. [PubMed] [Google Scholar]
  35. Pear W. S., Nolan G. P., Scott M. L., Baltimore D. Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci U S A. 1993 Sep 15;90(18):8392–8396. doi: 10.1073/pnas.90.18.8392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Podda S., Ward M., Himelstein A., Richardson C., de la Flor-Weiss E., Smith L., Gottesman M., Pastan I., Bank A. Transfer and expression of the human multiple drug resistance gene into live mice. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9676–9680. doi: 10.1073/pnas.89.20.9676. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Ringdén O., Groth C. G., Erikson A., Bäckman L., Granqvist S., Månsson J. E., Svennerholm L. Long-term follow-up of the first successful bone marrow transplantation in Gaucher disease. Transplantation. 1988 Jul;46(1):66–70. doi: 10.1097/00007890-198807000-00011. [DOI] [PubMed] [Google Scholar]
  38. Sorrentino B. P., Brandt S. J., Bodine D., Gottesman M., Pastan I., Cline A., Nienhuis A. W. Selection of drug-resistant bone marrow cells in vivo after retroviral transfer of human MDR1. Science. 1992 Jul 3;257(5066):99–103. doi: 10.1126/science.1352414. [DOI] [PubMed] [Google Scholar]
  39. Strair R. K., Towle M. J., Smith B. R. Recombinant retroviruses encoding cell surface antigens as selectable markers. J Virol. 1988 Dec;62(12):4756–4759. doi: 10.1128/jvi.62.12.4756-4759.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Sugimoto Y., Aksentijevich I., Gottesman M. M., Pastan I. Efficient expression of drug-selectable genes in retroviral vectors under control of an internal ribosome entry site. Biotechnology (N Y) 1994 Jul;12(7):694–698. doi: 10.1038/nbt0794-694. [DOI] [PubMed] [Google Scholar]
  41. Wells S., Malik P., Pensiero M., Kohn D. B., Nolta J. A. The presence of an autologous marrow stromal cell layer increases glucocerebrosidase gene transduction of long-term culture initiating cells (LTCICs) from the bone marrow of a patient with Gaucher disease. Gene Ther. 1995 Oct;2(8):512–520. [PubMed] [Google Scholar]
  42. Xu L. C., Karlsson S., Byrne E. R., Kluepfel-Stahl S., Kessler S. W., Agricola B. A., Sellers S., Kirby M., Dunbar C. E., Brady R. O. Long-term in vivo expression of the human glucocerebrosidase gene in nonhuman primates after CD34+ hematopoietic cell transduction with cell-free retroviral vector preparations. Proc Natl Acad Sci U S A. 1995 May 9;92(10):4372–4376. doi: 10.1073/pnas.92.10.4372. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Xu L. C., Kluepfel-Stahl S., Blanco M., Schiffmann R., Dunbar C., Karlsson S. Growth factors and stromal support generate very efficient retroviral transduction of peripheral blood CD34+ cells from Gaucher patients. Blood. 1995 Jul 1;86(1):141–146. [PubMed] [Google Scholar]
  44. Xu L., Stahl S. K., Dave H. P., Schiffmann R., Correll P. H., Kessler S., Karlsson S. Correction of the enzyme deficiency in hematopoietic cells of Gaucher patients using a clinically acceptable retroviral supernatant transduction protocol. Exp Hematol. 1994 Feb;22(2):223–230. [PubMed] [Google Scholar]
  45. van Beusechem V. W., Kukler A., Heidt P. J., Valerio D. Long-term expression of human adenosine deaminase in rhesus monkeys transplanted with retrovirus-infected bone-marrow cells. Proc Natl Acad Sci U S A. 1992 Aug 15;89(16):7640–7644. doi: 10.1073/pnas.89.16.7640. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES