Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Dec 19;92(26):12170–12174. doi: 10.1073/pnas.92.26.12170

A structural basis for a phosphoramide mustard-induced DNA interstrand cross-link at 5'-d(GAC).

Q Dong 1, D Barsky 1, M E Colvin 1, C F Melius 1, S M Ludeman 1, J F Moravek 1, O M Colvin 1, D D Bigner 1, P Modrich 1, H S Friedman 1
PMCID: PMC40318  PMID: 8618865

Abstract

Phosphoramide mustard-induced DNA interstrand cross-links were studied both in vitro and by computer simulation. The local determinants for the formation of phosphoramide mustard-induced DNA interstrand cross-links were defined by using different pairs of synthetic oligonucleotide duplexes, each of which contained a single potentially cross-linkable site. Phosphoramide mustard was found to cross-link dG to dG at a 5'-d(GAC)-3'. The structural basis for the formation of this 1,3 cross-link was studied by molecular dynamics and quantum chemistry. Molecular dynamics indicated that the geometrical proximity of the binding sites also favored a 1,3 dG-to-dG linkage over a 1,2 dG-to-dG linkage in a 5'-d(GCC)-3' sequence. While the enthalpies of 1,2 and 1,3 mustard cross-linked DNA were found to be very close, a 1,3 structure was more flexible and may therefore be in a considerably higher entropic state.

Full text

PDF
12170

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brookes P., Lawley P. D. The reaction of mono- and di-functional alkylating agents with nucleic acids. Biochem J. 1961 Sep;80(3):496–503. doi: 10.1042/bj0800496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Colvin M., Brundrett R. B., Kan M. N., Jardine I., Fenselau C. Alkylating properties of phosphoramide mustard. Cancer Res. 1976 Mar;36(3):1121–1126. [PubMed] [Google Scholar]
  3. Colvin M., Hilton J. Pharmacology of cyclophosphamide and metabolites. Cancer Treat Rep. 1981;65 (Suppl 3):89–95. [PubMed] [Google Scholar]
  4. Fritsch V., Ravishanker G., Beveridge D. L., Westhof E. Molecular dynamics simulations of poly(dA).poly(dT): comparisons between implicit and explicit solvent representations. Biopolymers. 1993 Oct;33(10):1537–1552. doi: 10.1002/bip.360331005. [DOI] [PubMed] [Google Scholar]
  5. Gamcsik M. P., Ludeman S. M., Shulman-Roskes E. M., McLennan I. J., Colvin M. E., Colvin O. M. Protonation of phosphoramide mustard and other phosphoramides. J Med Chem. 1993 Nov 12;36(23):3636–3645. doi: 10.1021/jm00075a019. [DOI] [PubMed] [Google Scholar]
  6. Hausheer F. H., Singh U. C., Saxe J. D., Colvin O. M. Identification of local determinants of DNA interstrand crosslink formation by cyclophosphamide metabolites. Anticancer Drug Des. 1989 Dec;4(4):281–294. [PubMed] [Google Scholar]
  7. Hemminki K., Ludlum D. B. Covalent modification of DNA by antineoplastic agents. J Natl Cancer Inst. 1984 Nov;73(5):1021–1028. [PubMed] [Google Scholar]
  8. Kohn K. W., Spears C. L., Doty P. Inter-strand crosslinking of DNA by nitrogen mustard. J Mol Biol. 1966 Aug;19(2):266–288. doi: 10.1016/s0022-2836(66)80004-9. [DOI] [PubMed] [Google Scholar]
  9. LAWLEY P. D., BROOKES P. FURTHER STUDIES ON THE ALKYLATION OF NUCLEIC ACIDS AND THEIR CONSTITUENT NUCLEOTIDES. Biochem J. 1963 Oct;89:127–138. doi: 10.1042/bj0890127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mattes W. B., Hartley J. A., Kohn K. W. Mechanism of DNA strand breakage by piperidine at sites of N7-alkylguanines. Biochim Biophys Acta. 1986 Oct 16;868(1):71–76. doi: 10.1016/0167-4781(86)90088-6. [DOI] [PubMed] [Google Scholar]
  11. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Maxam A. M., Gilbert W. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 1980;65(1):499–560. doi: 10.1016/s0076-6879(80)65059-9. [DOI] [PubMed] [Google Scholar]
  13. Ojwang J. O., Grueneberg D. A., Loechler E. L. Synthesis of a duplex oligonucleotide containing a nitrogen mustard interstrand DNA-DNA cross-link. Cancer Res. 1989 Dec 1;49(23):6529–6537. [PubMed] [Google Scholar]
  14. Remias M. G., Lee C. S., Haworth I. S. Molecular dynamics simulations of chlorambucil/DNA adducts. A structural basis for the 5'-GNC interstrand DNA crosslink formed by nitrogen mustards. J Biomol Struct Dyn. 1995 Feb;12(4):911–936. doi: 10.1080/07391102.1995.10508784. [DOI] [PubMed] [Google Scholar]
  15. Rink S. M., Hopkins P. B. A mechlorethamine-induced DNA interstrand cross-link bends duplex DNA. Biochemistry. 1995 Jan 31;34(4):1439–1445. doi: 10.1021/bi00004a039. [DOI] [PubMed] [Google Scholar]
  16. Singh U. C., Weiner S. J., Kollman P. Molecular dynamics simulations of d(C-G-C-G-A) X d(T-C-G-C-G) with and without "hydrated" counterions. Proc Natl Acad Sci U S A. 1985 Feb;82(3):755–759. doi: 10.1073/pnas.82.3.755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Sladek N. E. Metabolism of oxazaphosphorines. Pharmacol Ther. 1988;37(3):301–355. doi: 10.1016/0163-7258(88)90004-6. [DOI] [PubMed] [Google Scholar]
  18. Streeper R. T., Cotter R. J., Colvin M. E., Hilton J., Colvin O. M. Molecular pharmacology of hepsulfam, NSC 3296801: identification of alkylated nucleosides, alkylation site, and site of DNA cross-linking. Cancer Res. 1995 Apr 1;55(7):1491–1498. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES