Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Dec 19;92(26):12362–12366. doi: 10.1073/pnas.92.26.12362

Identification of signals required for the insertion of heterologous genome segments into the reovirus genome.

M R Roner 1, P N Lin 1, I Nepluev 1, L J Kong 1, W K Joklik 1
PMCID: PMC40357  PMID: 8618901

Abstract

In cells simultaneously infected with any two of the three reovirus serotypes ST1, ST2, and ST3, up to 15% of the yields are intertypic reassortants that contain all possible combinations of parental genome segments. We have now found that not all genome segments in reassortants are wild type. In reassortants that possess more ST1 than ST3 genome segments, all ST1 genome segments appear to be wild type, but the incoming ST3 genome segments possess mutations that make them more similar to the ST1 genome segments that they replace. In reassortants resulting from crosses of the more distantly related ST3 and ST2 viruses that possess a majority of ST3 genome segments, all incoming ST2 genome segments are wild type, but the ST3 S4 genome segment possesses two mutations, G74 to A and G624 to A, that function as acceptance signals. Recognition of these signals has far-reaching implications for the construction of reoviruses with novel properties and functions.

Full text

PDF
12362

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ahmed R., Fields B. N. Reassortment of genome segments between reovirus defective interfering particles and infectious virus: construction of temperature-sensitive and attenuated viruses by rescue of mutations from DI particles. Virology. 1981 Jun;111(2):351–363. doi: 10.1016/0042-6822(81)90339-1. [DOI] [PubMed] [Google Scholar]
  2. Antczak J. B., Joklik W. K. Reovirus genome segment assortment into progeny genomes studied by the use of monoclonal antibodies directed against reovirus proteins. Virology. 1992 Apr;187(2):760–776. doi: 10.1016/0042-6822(92)90478-8. [DOI] [PubMed] [Google Scholar]
  3. Cashdollar L. W., Chmelo R. A., Wiener J. R., Joklik W. K. Sequences of the S1 genes of the three serotypes of reovirus. Proc Natl Acad Sci U S A. 1985 Jan;82(1):24–28. doi: 10.1073/pnas.82.1.24. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Chapell J. D., Goral M. I., Rodgers S. E., dePamphilis C. W., Dermody T. S. Sequence diversity within the reovirus S2 gene: reovirus genes reassort in nature, and their termini are predicted to form a panhandle motif. J Virol. 1994 Feb;68(2):750–756. doi: 10.1128/jvi.68.2.750-756.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cross R. K., Fields B. N. Use of an aberrant polypeptide as a marker in three-factor crosses: further evidence for independent reassortment as the mechanism of recombination between temperature-sensitive mutants of reovirus type 3. Virology. 1976 Oct 15;74(2):345–362. doi: 10.1016/0042-6822(76)90341-x. [DOI] [PubMed] [Google Scholar]
  6. Drayna D., Fields B. N. Activation and characterization of the reovirus transcriptase: genetic analysis. J Virol. 1982 Jan;41(1):110–118. doi: 10.1128/jvi.41.1.110-118.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Elroy-Stein O., Fuerst T. R., Moss B. Cap-independent translation of mRNA conferred by encephalomyocarditis virus 5' sequence improves the performance of the vaccinia virus/bacteriophage T7 hybrid expression system. Proc Natl Acad Sci U S A. 1989 Aug;86(16):6126–6130. doi: 10.1073/pnas.86.16.6126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Giantini M., Seliger L. S., Furuichi Y., Shatkin A. J. Reovirus type 3 genome segment S4: nucleotide sequence of the gene encoding a major virion surface protein. J Virol. 1984 Dec;52(3):984–987. doi: 10.1128/jvi.52.3.984-987.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Joklik W. K., Roner M. R. What reassorts when reovirus genome segments reassort? J Biol Chem. 1995 Mar 3;270(9):4181–4184. doi: 10.1074/jbc.270.9.4181. [DOI] [PubMed] [Google Scholar]
  10. Moody M. D., Joklik W. K. The function of reovirus proteins during the reovirus multiplication cycle: analysis using monoreassortants. Virology. 1989 Dec;173(2):437–446. doi: 10.1016/0042-6822(89)90556-4. [DOI] [PubMed] [Google Scholar]
  11. Nonoyama M., Graham A. F. Appearance of defective virions in clones of reovirus. J Virol. 1970 Nov;6(5):693–694. doi: 10.1128/jvi.6.5.693-694.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Schuerch A. R., Matsuhisa T., Joklik W. K. Temperature-sensitive mutants of reovirus. VI. Mutant ts 447 and ts 556 particles that lack either one or two genome RNA segments. Intervirology. 1974;3(1-2):36–46. doi: 10.1159/000149740. [DOI] [PubMed] [Google Scholar]
  13. Sharpe A. H., Ramig R. F., Mustoe T. A., Fields B. N. A genetic map of reovirus. 1. Correlation of genome RNAs between serotypes 1, 2, and 3. Virology. 1978 Jan;84(1):63–74. doi: 10.1016/0042-6822(78)90218-0. [DOI] [PubMed] [Google Scholar]
  14. Starnes M. C., Joklik W. K. Reovirus protein lambda 3 is a poly(C)-dependent poly(G) polymerase. Virology. 1993 Mar;193(1):356–366. doi: 10.1006/viro.1993.1132. [DOI] [PubMed] [Google Scholar]
  15. Wiener J. R., Joklik W. K. Evolution of reovirus genes: a comparison of serotype 1, 2, and 3 M2 genome segments, which encode the major structural capsid protein mu 1C. Virology. 1988 Apr;163(2):603–613. doi: 10.1016/0042-6822(88)90301-7. [DOI] [PubMed] [Google Scholar]
  16. Wiener J. R., Joklik W. K. The sequences of the reovirus serotype 1, 2, and 3 L1 genome segments and analysis of the mode of divergence of the reovirus serotypes. Virology. 1989 Mar;169(1):194–203. doi: 10.1016/0042-6822(89)90055-x. [DOI] [PubMed] [Google Scholar]
  17. Zou S., Brown E. G. Identification of sequence elements containing signals for replication and encapsidation of the reovirus M1 genome segment. Virology. 1992 Feb;186(2):377–388. doi: 10.1016/0042-6822(92)90003-8. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES