Skip to main content
. Author manuscript; available in PMC: 2015 Jul 8.
Published in final edited form as: Tetrahedron. 2014 Jul 8;70(27-28):4245–4249. doi: 10.1016/j.tet.2014.03.008

Table 2.

Optimization of ArM catalyzed oxidationa

graphic file with name nihms578285u1.jpg
Entry Solvent Oxidant Convb. (%)
1 Tris (25mM, 7.0), 20%ACN Oxone, 10eq 0
2 NaPi (100mM, 7.0), 20%ACN Oxone, 10eq 77
3 NaPi (100mM, 7.0), 20%ACN AcOOH, 10eq 85
4 NaPi (100mM, 7.0), 20%ACN AcOOH, 2.5eq 83
5 NaPi (100mM, 7.0), 20%ACN AcOOH, 2eq 76
6 NaPi (100mM, 7.0), 30%ACN AcOOH, 2.5eq 12e
7 NaPi (100mM, 7.0), 10% ACN AcOOH, 2.5eq 91
8 NaPi (100mM, 7.0) AcOOH, 2.5eq 24
9c NaPi (100mM, 7.0), 10% ACN AcOOH, 2.5eq 45e
10d NaPi (100mM, 7.0), 10% ACN AcOOH, 2.5eq 58
a

Reaction conditions: 1 mM substrate, 5% ArM, 4 °C, overnight in dark.

b

Determined by GC analysis of DCM extract.

c

Reaction conducted at room temperature

d

2.5% ArM loading used.

e

Protein precipitation was observed.