Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Dec 5;92(25):11671–11675. doi: 10.1073/pnas.92.25.11671

Engineering an intracellular pathway for major histocompatibility complex class II presentation of antigens.

T C Wu 1, F G Guarnieri 1, K F Staveley-O'Carroll 1, R P Viscidi 1, H I Levitsky 1, L Hedrick 1, K R Cho 1, J T August 1, D M Pardoll 1
PMCID: PMC40464  PMID: 8524826

Abstract

The presentation of antigenic peptides by major histocompatibility complex (MHC) class II molecules to CD4+ T cells is critical to the function of the immune system. In this study, we have utilized the sorting signal of the lysosomal-associated membrane protein LAMP-1 to target a model antigen, human papillomavirus 16 E7 (HPV-16 E7), into the endosomal and lysosomal compartments. The LAMP-1 sorting signal reroutes the antigen into the MHC class II processing pathway, resulting in enhanced presentation to CD4+ cells in vitro. In vivo immunization experiments in mice demonstrated that vaccinia containing the chimeric E7/LAMP-1 gene generated greater E7-specific lymphoproliferative activity, antibody titers, and cytotoxic T-lymphocyte activities than vaccinia containing the wild-type HPV-16 E7 gene. These results suggest that specific targeting of an antigen to the endosomal and lysosomal compartments enhances MHC class II presentation and vaccine potency.

Full text

PDF
11671

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Angevine J. B., Jr, Sidman R. L. Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature. 1961 Nov 25;192:766–768. doi: 10.1038/192766b0. [DOI] [PubMed] [Google Scholar]
  2. Arimatsu Y., Miyamoto M., Nihonmatsu I., Hirata K., Uratani Y., Hatanaka Y., Takiguchi-Hayashi K. Early regional specification for a molecular neuronal phenotype in the rat neocortex. Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):8879–8883. doi: 10.1073/pnas.89.19.8879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Baker S. J., Markowitz S., Fearon E. R., Willson J. K., Vogelstein B. Suppression of human colorectal carcinoma cell growth by wild-type p53. Science. 1990 Aug 24;249(4971):912–915. doi: 10.1126/science.2144057. [DOI] [PubMed] [Google Scholar]
  4. Bennink J. R., Yewdell J. W. Recombinant vaccinia viruses as vectors for studying T lymphocyte specificity and function. Curr Top Microbiol Immunol. 1990;163:153–184. doi: 10.1007/978-3-642-75605-4_6. [DOI] [PubMed] [Google Scholar]
  5. Blum J. S., Fiani M. L., Stahl P. D. Proteolytic cleavage of ricin A chain in endosomal vesicles. Evidence for the action of endosomal proteases at both neutral and acidic pH. J Biol Chem. 1991 Nov 25;266(33):22091–22095. [PubMed] [Google Scholar]
  6. Breitfeld P. P., Casanova J. E., McKinnon W. C., Mostov K. E. Deletions in the cytoplasmic domain of the polymeric immunoglobulin receptor differentially affect endocytotic rate and postendocytotic traffic. J Biol Chem. 1990 Aug 15;265(23):13750–13757. [PubMed] [Google Scholar]
  7. Carter J. J., Yaegashi N., Jenison S. A., Galloway D. A. Expression of human papillomavirus proteins in yeast Saccharomyces cerevisiae. Virology. 1991 Jun;182(2):513–521. doi: 10.1016/0042-6822(91)90592-y. [DOI] [PubMed] [Google Scholar]
  8. Caviness V. S., Jr, Sidman R. L. Time of origin or corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: an autoradiographic analysis. J Comp Neurol. 1973 Mar 15;148(2):141–151. doi: 10.1002/cne.901480202. [DOI] [PubMed] [Google Scholar]
  9. Chen J. W., Murphy T. L., Willingham M. C., Pastan I., August J. T. Identification of two lysosomal membrane glycoproteins. J Cell Biol. 1985 Jul;101(1):85–95. doi: 10.1083/jcb.101.1.85. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chen W. J., Goldstein J. L., Brown M. S. NPXY, a sequence often found in cytoplasmic tails, is required for coated pit-mediated internalization of the low density lipoprotein receptor. J Biol Chem. 1990 Feb 25;265(6):3116–3123. [PubMed] [Google Scholar]
  11. Cohen-Tannoudji M., Babinet C., Wassef M. Early determination of a mouse somatosensory cortex marker. Nature. 1994 Mar 31;368(6470):460–463. doi: 10.1038/368460a0. [DOI] [PubMed] [Google Scholar]
  12. Cohen-Tannoudji M., Morello D., Babinet C. Unexpected position-dependent expression of H-2 and beta 2-microglobulin/lacZ transgenes. Mol Reprod Dev. 1992 Oct;33(2):149–159. doi: 10.1002/mrd.1080330206. [DOI] [PubMed] [Google Scholar]
  13. Collawn J. F., Lai A., Domingo D., Fitch M., Hatton S., Trowbridge I. S. YTRF is the conserved internalization signal of the transferrin receptor, and a second YTRF signal at position 31-34 enhances endocytosis. J Biol Chem. 1993 Oct 15;268(29):21686–21692. [PubMed] [Google Scholar]
  14. Davis A. A., Temple S. A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature. 1994 Nov 17;372(6503):263–266. doi: 10.1038/372263a0. [DOI] [PubMed] [Google Scholar]
  15. Dehay C., Giroud P., Berland M., Smart I., Kennedy H. Modulation of the cell cycle contributes to the parcellation of the primate visual cortex. Nature. 1993 Dec 2;366(6454):464–466. doi: 10.1038/366464a0. [DOI] [PubMed] [Google Scholar]
  16. Drezen J. M., Nouvel P., Babinet C., Morello D. Different regulation of class I gene expression in the adult mouse and during development. J Immunol. 1992 Jul 15;149(2):429–437. [PubMed] [Google Scholar]
  17. Ferri R. T., Levitt P. Regulation of regional differences in the differentiation of cerebral cortical neurons by EGF family-matrix interactions. Development. 1995 Apr;121(4):1151–1160. doi: 10.1242/dev.121.4.1151. [DOI] [PubMed] [Google Scholar]
  18. Fishell G., Mason C. A., Hatten M. E. Dispersion of neural progenitors within the germinal zones of the forebrain. Nature. 1993 Apr 15;362(6421):636–638. doi: 10.1038/362636a0. [DOI] [PubMed] [Google Scholar]
  19. Golumbek P. T., Lazenby A. J., Levitsky H. I., Jaffee L. M., Karasuyama H., Baker M., Pardoll D. M. Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science. 1991 Nov 1;254(5032):713–716. doi: 10.1126/science.1948050. [DOI] [PubMed] [Google Scholar]
  20. Greenfield I., Nickerson J., Penman S., Stanley M. Human papillomavirus 16 E7 protein is associated with the nuclear matrix. Proc Natl Acad Sci U S A. 1991 Dec 15;88(24):11217–11221. doi: 10.1073/pnas.88.24.11217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Guarnieri F. G., Arterburn L. M., Penno M. B., Cha Y., August J. T. The motif Tyr-X-X-hydrophobic residue mediates lysosomal membrane targeting of lysosome-associated membrane protein 1. J Biol Chem. 1993 Jan 25;268(3):1941–1946. [PubMed] [Google Scholar]
  22. Hammond S. A., Bollinger R. C., Stanhope P. E., Quinn T. C., Schwartz D., Clements M. L., Siliciano R. F. Comparative clonal analysis of human immunodeficiency virus type 1 (HIV-1)-specific CD4+ and CD8+ cytolytic T lymphocytes isolated from seronegative humans immunized with candidate HIV-1 vaccines. J Exp Med. 1992 Dec 1;176(6):1531–1542. doi: 10.1084/jem.176.6.1531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Jaffe L., Jeannotte L., Bikoff E. K., Robertson E. J. Analysis of beta 2-microglobulin gene expression in the developing mouse embryo and placenta. J Immunol. 1990 Nov 15;145(10):3474–3482. [PubMed] [Google Scholar]
  24. Lewis V., Green S. A., Marsh M., Vihko P., Helenius A., Mellman I. Glycoproteins of the lysosomal membrane. J Cell Biol. 1985 Jun;100(6):1839–1847. doi: 10.1083/jcb.100.6.1839. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Luskin M. B., Pearlman A. L., Sanes J. R. Cell lineage in the cerebral cortex of the mouse studied in vivo and in vitro with a recombinant retrovirus. Neuron. 1988 Oct;1(8):635–647. doi: 10.1016/0896-6273(88)90163-8. [DOI] [PubMed] [Google Scholar]
  26. Mak T. W., Rahemtulla A., Schilham M., Koh D. R., Fung-Leung W. P. Generation of mutant mice lacking surface expression of CD4 or CD8 by gene targeting. J Autoimmun. 1992 Apr;5 (Suppl A):55–59. doi: 10.1016/0896-8411(92)90019-m. [DOI] [PubMed] [Google Scholar]
  27. Mione M. C., Danevic C., Boardman P., Harris B., Parnavelas J. G. Lineage analysis reveals neurotransmitter (GABA or glutamate) but not calcium-binding protein homogeneity in clonally related cortical neurons. J Neurosci. 1994 Jan;14(1):107–123. doi: 10.1523/JNEUROSCI.14-01-00107.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Misson J. P., Edwards M. A., Yamamoto M., Caviness V. S., Jr Identification of radial glial cells within the developing murine central nervous system: studies based upon a new immunohistochemical marker. Brain Res Dev Brain Res. 1988 Nov 1;44(1):95–108. doi: 10.1016/0165-3806(88)90121-6. [DOI] [PubMed] [Google Scholar]
  29. Neefjes J. J., Stollorz V., Peters P. J., Geuze H. J., Ploegh H. L. The biosynthetic pathway of MHC class II but not class I molecules intersects the endocytic route. Cell. 1990 Apr 6;61(1):171–183. doi: 10.1016/0092-8674(90)90224-3. [DOI] [PubMed] [Google Scholar]
  30. Nowakowski R. S., Rakic P. The mode of migration of neurons to the hippocampus: a Golgi and electron microscopic analysis in foetal rhesus monkey. J Neurocytol. 1979 Dec;8(6):697–718. doi: 10.1007/BF01206671. [DOI] [PubMed] [Google Scholar]
  31. Nuchtern J. G., Biddison W. E., Klausner R. D. Class II MHC molecules can use the endogenous pathway of antigen presentation. Nature. 1990 Jan 4;343(6253):74–76. doi: 10.1038/343074a0. [DOI] [PubMed] [Google Scholar]
  32. O'Leary D. D. Do cortical areas emerge from a protocortex? Trends Neurosci. 1989 Oct;12(10):400–406. doi: 10.1016/0166-2236(89)90080-5. [DOI] [PubMed] [Google Scholar]
  33. O'Rourke N. A., Dailey M. E., Smith S. J., McConnell S. K. Diverse migratory pathways in the developing cerebral cortex. Science. 1992 Oct 9;258(5080):299–302. doi: 10.1126/science.1411527. [DOI] [PubMed] [Google Scholar]
  34. O'Rourke N. A., Sullivan D. P., Kaznowski C. E., Jacobs A. A., McConnell S. K. Tangential migration of neurons in the developing cerebral cortex. Development. 1995 Jul;121(7):2165–2176. doi: 10.1242/dev.121.7.2165. [DOI] [PubMed] [Google Scholar]
  35. Ostrand-Rosenberg S., Thakur A., Clements V. Rejection of mouse sarcoma cells after transfection of MHC class II genes. J Immunol. 1990 May 15;144(10):4068–4071. [PubMed] [Google Scholar]
  36. Peters C., Braun M., Weber B., Wendland M., Schmidt B., Pohlmann R., Waheed A., von Figura K. Targeting of a lysosomal membrane protein: a tyrosine-containing endocytosis signal in the cytoplasmic tail of lysosomal acid phosphatase is necessary and sufficient for targeting to lysosomes. EMBO J. 1990 Nov;9(11):3497–3506. doi: 10.1002/j.1460-2075.1990.tb07558.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Polydefkis M., Koenig S., Flexner C., Obah E., Gebo K., Chakrabarti S., Earl P. L., Moss B., Siliciano R. F. Anchor sequence-dependent endogenous processing of human immunodeficiency virus 1 envelope glycoprotein gp160 for CD4+ T cell recognition. J Exp Med. 1990 Mar 1;171(3):875–887. doi: 10.1084/jem.171.3.875. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Rakic P. Specification of cerebral cortical areas. Science. 1988 Jul 8;241(4862):170–176. doi: 10.1126/science.3291116. [DOI] [PubMed] [Google Scholar]
  39. Renfranz P. J., Cunningham M. G., McKay R. D. Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain. Cell. 1991 Aug 23;66(4):713–729. doi: 10.1016/0092-8674(91)90116-g. [DOI] [PubMed] [Google Scholar]
  40. Renfrew C. A., Hubbard A. L. Degradation of epidermal growth factor receptor in rat liver. Membrane topology through the lysosomal pathway. J Biol Chem. 1991 Nov 5;266(31):21265–21273. [PubMed] [Google Scholar]
  41. Roederer M., Bowser R., Murphy R. F. Kinetics and temperature dependence of exposure of endocytosed material to proteolytic enzymes and low pH: evidence for a maturation model for the formation of lysosomes. J Cell Physiol. 1987 May;131(2):200–209. doi: 10.1002/jcp.1041310209. [DOI] [PubMed] [Google Scholar]
  42. Sarmiento M., Glasebrook A. L., Fitch F. W. IgG or IgM monoclonal antibodies reactive with different determinants on the molecular complex bearing Lyt 2 antigen block T cell-mediated cytolysis in the absence of complement. J Immunol. 1980 Dec;125(6):2665–2672. [PubMed] [Google Scholar]
  43. Sato H., Watanabe S., Furuno A., Yoshiike K. Human papillomavirus type 16 E7 protein expressed in Escherichia coli and monkey COS-1 cells: immunofluorescence detection of the nuclear E7 protein. Virology. 1989 May;170(1):311–315. doi: 10.1016/0042-6822(89)90386-3. [DOI] [PubMed] [Google Scholar]
  44. Schwartz M. L., Rakic P., Goldman-Rakic P. S. Early phenotype expression of cortical neurons: evidence that a subclass of migrating neurons have callosal axons. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1354–1358. doi: 10.1073/pnas.88.4.1354. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Tan S. S., Breen S. Radial mosaicism and tangential cell dispersion both contribute to mouse neocortical development. Nature. 1993 Apr 15;362(6421):638–640. doi: 10.1038/362638a0. [DOI] [PubMed] [Google Scholar]
  46. Tan S. S., Faulkner-Jones B., Breen S. J., Walsh M., Bertram J. F., Reese B. E. Cell dispersion patterns in different cortical regions studied with an X-inactivated transgenic marker. Development. 1995 Apr;121(4):1029–1039. doi: 10.1242/dev.121.4.1029. [DOI] [PubMed] [Google Scholar]
  47. Tindle R. W., Fernando G. J., Sterling J. C., Frazer I. H. A "public" T-helper epitope of the E7 transforming protein of human papillomavirus 16 provides cognate help for several E7 B-cell epitopes from cervical cancer-associated human papillomavirus genotypes. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5887–5891. doi: 10.1073/pnas.88.13.5887. [DOI] [PMC free article] [PubMed] [Google Scholar]
  48. Topalian S. L., Rivoltini L., Mancini M., Markus N. R., Robbins P. F., Kawakami Y., Rosenberg S. A. Human CD4+ T cells specifically recognize a shared melanoma-associated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci U S A. 1994 Sep 27;91(20):9461–9465. doi: 10.1073/pnas.91.20.9461. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Walsh C., Cepko C. L. Clonal dispersion in proliferative layers of developing cerebral cortex. Nature. 1993 Apr 15;362(6421):632–635. doi: 10.1038/362632a0. [DOI] [PubMed] [Google Scholar]
  50. Wu T. C. Immunology of the human papilloma virus in relation to cancer. Curr Opin Immunol. 1994 Oct;6(5):746–754. doi: 10.1016/0952-7915(94)90079-5. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES