Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1995 Dec 5;92(25):11819–11823. doi: 10.1073/pnas.92.25.11819

Localization of choline acetyltransferase in rat peripheral sympathetic neurons and its coexistence with nitric oxide synthase and neuropeptides.

M A Morales 1, K Holmberg 1, Z Q Xu 1, C Cozzari 1, B K Hartman 1, P Emson 1, M Goldstein 1, L G Elfvin 1, T Hökfelt 1
PMCID: PMC40494  PMID: 8524856

Abstract

Indirect immunofluorescence methods using a mouse monoclonal antibody raised to rat choline acetyltransferase (ChAT) revealed dense networks of ChAT-immunoreactive fibers in the superior cervical ganglion, the stellate ganglion, and the celiac superior mesenteric ganglion of the rat. Numerous and single ChAT-immunoreactive cell bodies were observed in the stellate and superior cervical ganglia, respectively. The majority of ChAT-immunoreactive fibers in the stellate and superior cervical ganglia were nitric oxide synthase (NOS) positive. Some ChAT-immunoreactive fibers contained enkephalin-like immunoreactivity. Virtually all ChAT-positive cell bodies in the stellate ganglion were vasoactive intestinal polypeptide (VIP)-positive, and some were calcitonin gene-related peptide (CGRP)-positive. After transection of the cervical sympathetic trunk almost all ChAT- and NOS-positive fibers and most enkephalin- and CGRP-positive fibers disappeared in the superior cervical ganglion. The results suggest that most preganglionic fibers are cholinergic and that the majority of these in addition can release nitric oxide, some enkephalin, and a few CGRP. Acetylcholine, VIP, and CGRP are coexisting messenger molecules in some postganglionic sympathetic neurons.

Full text

PDF
11819

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson C. R., Edwards S. L., Furness J. B., Bredt D. S., Snyder S. H. The distribution of nitric oxide synthase-containing autonomic preganglionic terminals in the rat. Brain Res. 1993 Jun 18;614(1-2):78–85. doi: 10.1016/0006-8993(93)91020-s. [DOI] [PubMed] [Google Scholar]
  2. Anderson C. R., Furness J. B., Woodman H. L., Edwards S. L., Crack P. J., Smith A. I. Characterisation of neurons with nitric oxide synthase immunoreactivity that project to prevertebral ganglia. J Auton Nerv Syst. 1995 Apr 8;52(2-3):107–116. doi: 10.1016/0165-1838(94)00150-i. [DOI] [PubMed] [Google Scholar]
  3. Anderson C. R. NADPH diaphorase-positive neurons in the rat spinal cord include a subpopulation of autonomic preganglionic neurons. Neurosci Lett. 1992 May 25;139(2):280–284. doi: 10.1016/0304-3940(92)90571-n. [DOI] [PubMed] [Google Scholar]
  4. Blottner D., Baumgarten H. G. Nitric oxide synthetase (NOS)-containing sympathoadrenal cholinergic neurons of the rat IML-cell column: evidence from histochemistry, immunohistochemistry, and retrograde labeling. J Comp Neurol. 1992 Feb 1;316(1):45–55. doi: 10.1002/cne.903160105. [DOI] [PubMed] [Google Scholar]
  5. Bredt D. S., Snyder S. H. Nitric oxide, a novel neuronal messenger. Neuron. 1992 Jan;8(1):3–11. doi: 10.1016/0896-6273(92)90104-l. [DOI] [PubMed] [Google Scholar]
  6. Ceccatelli S., Lundberg J. M., Zhang X., Aman K., Hökfelt T. Immunohistochemical demonstration of nitric oxide synthase in the peripheral autonomic nervous system. Brain Res. 1994 Sep 12;656(2):381–395. doi: 10.1016/0006-8993(94)91483-4. [DOI] [PubMed] [Google Scholar]
  7. Dagerlind A., Zhang X., Brimijoin S., Lindh B., Hökfelt T. Effects of preganglionic sympathectomy on peptides in the rat superior cervical ganglion. Neuroreport. 1994 Apr 14;5(8):909–912. doi: 10.1097/00001756-199404000-00014. [DOI] [PubMed] [Google Scholar]
  8. Dun N. J., Dun S. L., Forstermann U., Tseng L. F. Nitric oxide synthase immunoreactivity in rat spinal cord. Neurosci Lett. 1992 Dec 7;147(2):217–220. doi: 10.1016/0304-3940(92)90599-3. [DOI] [PubMed] [Google Scholar]
  9. Dun N. J., Dun S. L., Wu S. Y., Förstermann U. Nitric oxide synthase immunoreactivity in rat superior cervical ganglia and adrenal glands. Neurosci Lett. 1993 Aug 6;158(1):51–54. doi: 10.1016/0304-3940(93)90610-w. [DOI] [PubMed] [Google Scholar]
  10. Elfvin L. G., Lindh B., Hökfelt T. The chemical neuroanatomy of sympathetic ganglia. Annu Rev Neurosci. 1993;16:471–507. doi: 10.1146/annurev.ne.16.030193.002351. [DOI] [PubMed] [Google Scholar]
  11. Furchgott R. F. The 1989 Ulf von Euler lecture. Studies on endothelium-dependent vasodilation and the endothelium-derived relaxing factor. Acta Physiol Scand. 1990 Jun;139(2):257–270. doi: 10.1111/j.1748-1716.1990.tb08923.x. [DOI] [PubMed] [Google Scholar]
  12. Furness J. B., Costa M., Emson P. C., Håkanson R., Moghimzadeh E., Sundler F., Taylor I. L., Chance R. E. Distribution, pathways and reactions to drug treatment of nerves with neuropeptide Y- and pancreatic polypeptide-like immunoreactivity in the guinea-pig digestive tract. Cell Tissue Res. 1983;234(1):71–92. doi: 10.1007/BF00217403. [DOI] [PubMed] [Google Scholar]
  13. Garthwaite J., Boulton C. L. Nitric oxide signaling in the central nervous system. Annu Rev Physiol. 1995;57:683–706. doi: 10.1146/annurev.ph.57.030195.003343. [DOI] [PubMed] [Google Scholar]
  14. Garthwaite J. Glutamate, nitric oxide and cell-cell signalling in the nervous system. Trends Neurosci. 1991 Feb;14(2):60–67. doi: 10.1016/0166-2236(91)90022-m. [DOI] [PubMed] [Google Scholar]
  15. HOLMSTEDT B., SJOQVIST F. Distribution of acetocholinesterase in the ganglion cells of various sympathetic ganglia. Acta Physiol Scand. 1959 Nov 15;47:284–296. doi: 10.1111/j.1748-1716.1960.tb00080.x. [DOI] [PubMed] [Google Scholar]
  16. Hartman B. K., Zide D., Udenfriend S. The use of dopamine -hydroxylase as a marker for the central noradrenergic nervous system in rat brain. Proc Natl Acad Sci U S A. 1972 Sep;69(9):2722–2726. doi: 10.1073/pnas.69.9.2722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. KOELLE G. B. The elimination of enzymatic diffusion artifacts in the histochemical localization of cholinesterases and a survey of their cellular distributions. J Pharmacol Exp Ther. 1951 Oct;103(2):153–171. [PubMed] [Google Scholar]
  18. Kasa P., Dobo E., Wolff J. R. Cholinergic innervation of the mouse superior cervical ganglion: light- and electron-microscopic immunocytochemistry for choline acetyltransferase. Cell Tissue Res. 1991 Jul;265(1):151–158. doi: 10.1007/BF00318149. [DOI] [PubMed] [Google Scholar]
  19. Kondo H., Kuramoto H., Wainer B. H., Yanaihara N. Evidence for the coexistence of acetylcholine and enkephalin in the sympathetic preganglionic neurons of rats. Brain Res. 1985 Jun 3;335(2):309–314. doi: 10.1016/0006-8993(85)90483-4. [DOI] [PubMed] [Google Scholar]
  20. Landis S. C., Fredieu J. R. Coexistence of calcitonin gene-related peptide and vasoactive intestinal peptide in cholinergic sympathetic innervation of rat sweat glands. Brain Res. 1986 Jul 2;377(1):177–181. doi: 10.1016/0006-8993(86)91205-9. [DOI] [PubMed] [Google Scholar]
  21. Lindh B., Staines W., Hökfelt T., Terenius L., Salvaterra P. M. Immunohistochemical demonstration of choline acetyltransferase-immunoreactive preganglionic nerve fibers in guinea pig autonomic ganglia. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5316–5320. doi: 10.1073/pnas.83.14.5316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Lundberg J. M., Anggård A., Fahrenkrug J., Hökfelt T., Mutt V. Vasoactive intestinal polypeptide in cholinergic neurons of exocrine glands: functional significance of coexisting transmitters for vasodilation and secretion. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1651–1655. doi: 10.1073/pnas.77.3.1651. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Lundberg J. M., Hökfelt T., Schultzberg M., Uvnäs-Wallensten K., Köhler C., Said S. I. Occurrence of vasoactive intestinal polypeptide (VIP)-like immunoreactivity in certain cholinergic neurons of the cat: evidence from combined immunohistochemistry and acetylcholinesterase staining. Neuroscience. 1979;4(11):1539–1559. doi: 10.1016/0306-4522(79)90018-6. [DOI] [PubMed] [Google Scholar]
  24. Markey K. A., Kondo H., Shenkman L., Goldstein M. Purification and characterization of tyrosine hydroxylase from a clonal pheochromocytoma cell line. Mol Pharmacol. 1980 Jan;17(1):79–85. [PubMed] [Google Scholar]
  25. Moncada S. The 1991 Ulf von Euler Lecture. The L-arginine: nitric oxide pathway. Acta Physiol Scand. 1992 Jul;145(3):201–227. doi: 10.1111/j.1748-1716.1992.tb09359.x. [DOI] [PubMed] [Google Scholar]
  26. Sann H., McCarthy P. W., Schemann M., Jurzak M., Poethke R., Pierau F. K. Choline acetyltransferase-immunoreactive neurones in a prevertebral sympathetic ganglion, the inferior mesenteric ganglion. J Auton Nerv Syst. 1995 Sep 5;54(3):195–205. doi: 10.1016/0165-1838(95)00019-t. [DOI] [PubMed] [Google Scholar]
  27. Sasek C. A., Zigmond R. E. Localization of vasoactive intestinal peptide- and peptide histidine isoleucine amide-like immunoreactivities in the rat superior cervical ganglion and its nerve trunks. J Comp Neurol. 1989 Feb 22;280(4):522–532. doi: 10.1002/cne.902800403. [DOI] [PubMed] [Google Scholar]
  28. Schultzberg M., Hökfelt T., Terenius L., Elfvin L. G., Lundberg J. M., Brandt J., Elde R. P., Goldstein M. Enkephalin immunoreactive nerve fibres and cell bodies in sympathetic ganglia of the guinea-pig and rat. Neuroscience. 1979;4(2):249–270. doi: 10.1016/0306-4522(79)90087-3. [DOI] [PubMed] [Google Scholar]
  29. Steele P. A., Brookes S. J., Costa M. Immunohistochemical identification of cholinergic neurons in the myenteric plexus of guinea-pig small intestine. Neuroscience. 1991;45(1):227–239. doi: 10.1016/0306-4522(91)90119-9. [DOI] [PubMed] [Google Scholar]
  30. Suzuki N., Hardebo J. E., Owman C. Origins and pathways of choline acetyltransferase-positive parasympathetic nerve fibers to cerebral vessels in rat. J Cereb Blood Flow Metab. 1990 May;10(3):399–408. doi: 10.1038/jcbfm.1990.70. [DOI] [PubMed] [Google Scholar]
  31. Umbriaco D., Watkins K. C., Descarries L., Cozzari C., Hartman B. K. Ultrastructural and morphometric features of the acetylcholine innervation in adult rat parietal cortex: an electron microscopic study in serial sections. J Comp Neurol. 1994 Oct 15;348(3):351–373. doi: 10.1002/cne.903480304. [DOI] [PubMed] [Google Scholar]
  32. Valtschanoff J. G., Weinberg R. J., Rustioni A. NADPH diaphorase in the spinal cord of rats. J Comp Neurol. 1992 Jul 8;321(2):209–222. doi: 10.1002/cne.903210204. [DOI] [PubMed] [Google Scholar]
  33. Vincent S. R., Hope B. T. Neurons that say NO. Trends Neurosci. 1992 Mar;15(3):108–113. doi: 10.1016/0166-2236(92)90021-y. [DOI] [PubMed] [Google Scholar]
  34. Yamamoto K., Senba E., Matsunaga T., Tohyama M. Calcitonin gene-related peptide containing sympathetic preganglionic and sensory neurons projecting to the superior cervical ganglion of the rat. Brain Res. 1989 May 15;487(1):158–164. doi: 10.1016/0006-8993(89)90952-9. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES